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Developmental aspects of number concepts were evaluated using participants from the
beginning and end of first grade (6–7 years old), third and fifth grades (7–11 years old),
and university (22 years old). Participants evaluated the numerical value or physical size
of stimuli varying along both dimensions. The numerical distance effect appeared in all
groups. In contrast, the size congruity effect started to appear only at the end of first grade.
Based on our results, a model of internal representation of magnitude claiming that there
are two different representations was propose. At the beginning of first grade children can
automatically access only one of these representations and only from the end of first grade
can they access both of these representations.© 2002 Elsevier Science
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Moyer and Landauer (1967) were the first to find that the larger the numerical
difference between two digits, the shorter the time required to decide which is
larger. For example, it takes longer to decide that “8” is larger than “6” than to
decide that “8” is larger than “1.” This distance effecthas since been reported in
numerous studies (e.g., Banks, Mermelstein, & Yu, 1982; Dehaene, 1989;
Dehaene, Dupoux, & Mehler, 1990; Duncan & McFarland, 1980; Henik &
Tzelgov, 1982; Link, 1990; Moyer, 1973; Moyer & Bayer, 1976; Parkman, 1971;
Schwarz & Heinze, 1998; Tzelgov, Meyer, & Henik, 1992). Dehaene (1997)
trained university students to avoid the distance effect and found that even after
1600 training trials, participants were still slower with close digits than with more
distant ones. Moyer and Landauer (1967) suggested that people convert written
or auditory numbers into analog magnitudes. The comparison between these
magnitudes is made in much the same way that comparisons are made between
physical stimuli such as lengths of lines. It has been postulated that the source of
the distance effect is the overlap between representations of numbers. That is, the
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internal semantic representations of close numbers, such as “1” and “2,” overlap
more than those of more distant numbers (Dehaene & Changeux, 1993; Gallistel
& Gelman, 1992). Several investigators argue that numerals or semantic sizes are
directly represented in a linear order (Rabinowits, Grant, Howe, & Walsh, 1994;
Tzelgov, Yehene, Kotler, & Alon, 2000). In addition, it is suggested that not only
do numbers map onto internal magnitudes or quantitative values, but also that this
mapping is automatic (Dehaene, 1992; Dehaene & Akhavein, 1995; Henik &
Tzelgov, 1982; Tzelgov, Meyer, & Henik, 1992; Zbrodoff & Logan, 1986).

What is automaticity? Posner (1978) likened automaticity to reflexive behav-
ior and suggested three indicators for such activity: automatic processes occur
without intention and without conscious awareness, and they can run in parallel
with other cognitive processes since they do not require attention in order to be
executed (see also Hasher & Zacks, 1979). However, these classic requirements
have been criticized during the past decades (e.g., Carr, 1992; Logan, 1985). It
has been shown that automatic processes are sensitive to attentional requirements
and expectations (Zbrodoff & Logan, 1986). Tzelgov, Henik, Sneg, and Baruch
(1996) suggested that a process is automatic if it does not need monitoring to be
executed. That is, once the process is triggered, either by intention or by external
unintentional stimulation, it runs by itself without the need of conscious moni-
toring.

Several researchers argued that the distance effect indicates automatic process-
ing. For example, Dehaene and Akhavein (1995) argued that the distance effect
indicates that the representation of number magnitude is automatically accessed
whether or not the task requires the use of numerical values. The participants in
their experiment had to decide whether two digits presented together (e.g., 3-3 or
three-3) were identical. The distance effect was obtained in most trials. Another
effect that indicates automaticity of processing the numerical value of digits
appears in a Stroop-like paradigm. In this paradigm participants are shown pairs
of Arabic numerals and asked to decide which of the two numerals is larger.
Participants are asked to relate to the physical size of the digits and to ignore the
numerical value, or they can be asked to relate to the numerical value of the dig-
its and ignore their physical size. The two digits can be incongruent, congruent,
or neutral. In the congruent trials the numerically larger numeral is also physi-
cally larger (e.g., 5 2), in the incongruent trials the numerically larger numeral is
physically smaller (e.g.,5 2), and in the neutral trials only the physical size is dif-
ferent and the digits have the same numerical value or the other way around (e.g.,
5 5 or 5 2, for physical comparisons and numerical comparisons, respectively).
The size congruity effect(Paivio, 1975), an indication for automatic processing of
the irrelevant dimension, is manifested by shorter reaction times (RT) for con-
gruent trials than for incongruent trials (Besner & Coltheart, 1979; Dehaene,
1992; Henik & Tzelgov, 1982; Schwarz & Heinze, 1998; Tzelgov, Meyer, &
Henik, 1992). In general, the outcome of this Stroop-like paradigm suggests an
automatic activation of numerical information. That is, when participants judge
the physical sizes of digits they cannot ignore their numerical values.
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Interestingly, the numerical distance between two digits influences perform-
ance only in numerical judgments and is absent in physical judgments (Tzelgov,
Meyer, & Henik, 1992). In contrast, the size congruity effect is found in both
numerical and physical judgments (Henik & Tzelgov, 1982; Tzelgov, Meyer, &
Henik, 1992). We should mention here that Dehaene and Akhavein (1995) found
a distance effect even when the numerical value (semantic information) was irrel-
evant to their task. We believe that this finding does not necessarily contradict the
common lack of distance effect in physical judgments in the Stroop-like para-
digm. Dehaene and Akhavein asked their participants to decide if two numbers
(Arabic numerals or written words) were identical (in their form) or not. Physical
sizes were roughly the same. There were several differences between the
same–different task employed by Dehaene and Akhavein and the Stroop-like par-
adigm used in comparative judgements. These differences might have produced
the different results. For example, Boucart and Humphteys (1994) have recently
suggested that processing of an irrelevant dimension is contingent upon the
saliency of the relevant dimension. It is possible that global shape is less salient
and requires elaborate processing, which in turn entails processing of other
dimensions of the stimuli, like the numerical value. In contrast, physical compar-
isons involve a salient dimension, which in turn prevents semantic processing of
the stimuli (e.g., numerical dimension).

One can distinguish between two modes of automatic processing. When a
process is part of the task requirements it is intentional, whereas when it is not
part of the task requirements (but nevertheless affects performance) it is
autonomous (Tzelgov et al., 1996). Hence, the distance effect might be consid-
ered a product of intentional automatic processingand the size congruity effect
might be considered a product of autonomous automatic processing.

EARLY NUMERICAL DEVELOPMENT

The ability to automatically process the quantitative values of Arabic numerals
may play an important role in the acquisition and implementation of skilled cal-
culation (Griffin, Case, & Capodilupo, 1995). Hence, studying this ability has
important implications for theories of education and child development in the
field of number processing. Accordingly, the current study examines develop-
mental changes in the representations of magnitude and to what extent these rep-
resentations are activated automatically.

It may be suggested that by the time children associate Arabic numerals with
symbolic values they already exhibit magnitude information that is independent
of formal school instruction. Piaget (1953) argued that “It is a great mistake to
suppose that a child acquires the notion of numbers and other mathematical con-
cepts just from teaching. On the contrary, to a remarkable degree he develops
them himself independently and spontaneously” (p. 74; see also Piaget, 1952).
However, he believed that children are born without any preconceived idea about
arithmetic. Only during the first 8 years, while manipulating collections of
objects in the environment, do they discover the true meaning of numbers.

76 RUBINSTEN ET AL.



Contrary to Piaget’s theory, there is some recent evidence that shows that con-
ceptual understanding of counting is present very early in life. Dehaene (1997)
summarized his book by saying that “. . . in children, numerical estimation, com-
parison, counting, simple addition and abstraction all emerge spontaneously with-
out much explicit instruction” (p. 245).

Gallistel and Gelman (1992) and Gelman (1978) suggested that preschool-age
children possess a range of sophisticated quantitative abilities reflecting number
abstraction principles. Most studies in the field relate to this early knowledge as
“preverbal counting” (Gallistel & Gelman, 1992; Whalen, Gallistel, & Gelman,
1999), internal representation of magnitude (Gallistel & Gelman, 1992; Ta’ir,
Bresner, & Ariel, 1997), or implicit knowledge (Gelman, 1982, 1994). Moreover,
this implicit knowledge is evident in their behavior even if they cannot express it
explicitly. That is, this knowledge is activated automatically. An important ques-
tion is whether this implicit knowledge is activated when it is irrelevant to the task
at hand. For example, will an irrelevant numerical value be activated in young
children so that it interferes with a relevant physical comparison?

Only a few studies tested the distance effect in children. Duncan and
McFarland (1980) asked children to decide whether two Arabic numerals were
identical. This task required a simple visual matching and yet the authors found
a distance effect in participants from kindergarten, first grade, third grade, and
fifth grade. The authors argued that their findings suggest that children as
young as 6 years old access magnitude information automatically. Temple and
Posner (1998) found a distance effect in 5- and 9-year-old children. Sekular and
Mierkiewicz (1977) found that the function relating judgment time to numeri-
cal difference is steeper for children in kindergarten and first grade relative to
children in fourth and seventh grades. Huntley-Fenner and Cannon (2000)
found that 3 to 5-year-olds find it more difficult to discriminate arrays in a 2:3
relationship than arrays in a 1:2 relationship. Even infants show the distance
effect: Xu and Spelke (2000) found that infants could discriminate 8 versus 16
items, but not 8 versus 12 items. Note that the distance effect indicates only
what was defined previously as intentional automatic processing (Tzelgov,
Henik, Sneg, & Baruch, 1996). A more stringent test of the automaticity of
numerical processing (or autonomous automatic processing according to the
same categorization) is to find if numerical values interfere with processing
when they are completely irrelevant to the task at hand. One possible sign of
this would be the size congruity effect of numerical values found in the Stroop-
like paradigm. Girelli, Lucangeli, and Butterworth (2000) (see also
Butterworth, 1999) did not find a size congruity effect in the performance of
first-grade children when the task was to compare the physical sizes of Arabic
numerals and to ignore their numerical values. The size congruity effect
emerged only in the third grade and was also significant in the fifth grade. They
argued that their findings indicate that children as young as 6 years old do not
automatically access the quantitative values of Arabic numerals since numeri-
cal values did not interfere with physical judgments. Note that there is another
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measure of automaticity that was not discussed in their work, which is reflect-
ed in the distance effect (Dehaene & Akhavein, 1995). It should be noted that
Girelli, Lucangeli, and Butterworth (2000) examined the effect of laterality
(and not distance) by comparing bilateral pairs (i.e., one digit was smaller and
the other larger than 5) and unilateral pairs (i.e., both digits either smaller or
larger than 5). For the bilateral stimuli they employed pairs with distance 5
(e.g., 1 6), while for the unilateral stimuli they employed pairs with distance 1
(e.g., 1 2). The authors did report a significant effect of laterality (i.e., RTs to
bilateral pairs were shorter than RTs to unilateral pairs) in numerical compar-
isons regardless of age, which could indicate a distance effect. However, their
experimental arrangement confounded laterality and distance, so the fact that
bilateral pairs were responded to faster than unilateral pairs could have been
due either to the influence of laterality or to the distance effect. Hence, their
findings still cannot provide us with a very specific idea of how magnitudes are
internally represented in adults as well as in children.

It should be mentioned here that the Girelli, Lucangeli, and Butterworth (2000)
article was published when we had just finished running our experiment and, at
that time, we were unaware of its existence.

HOW CAN DISTANCE AND SIZE CONGRUITY EFFECTS
CONTRIBUTE TO THE UNDERSTANDING OF THE INTERNAL

REPRESENTATION OF MAGNITUDE?

As mentioned, the distance effect indicates automatic access of numerical val-
ues (Dehaene & Akhavein, 1995). Accordingly, one can ask, why does not it
interfere with physical size comparisons? There are two alternative answers to
this question. The first one suggests that these two effects (i.e., the size congruity
effect and the distance effect) are dissociable because they indicate access to two
different representationsof internal numerical magnitude. The second suggests
that these two effects represent two stages in accessing one internal representa-
tion of the number line(for an example see, Banks, 1977). In what follows we
discuss these two hypotheses.

According to the two representations model, size congruity and distance effects
reflect accessing two representations of numerical magnitude that are qualitative-
ly different. Theories of skill development assume that acquisition of a cognitive
skill starts by applying a mental algorithm: a set of mental computations aimed at
solving the problem in question. During practice performance improves and
becomes automatic. The literature suggests two mechanisms that underlie the
improvement with practice. Logan (1988) proposed that with practice we accu-
mulate instances that can be later accessed easily. Automaticity reflects direct
retrieval of these instances from memory. Others assume that practice gradually
improves the application of the algorithm. Note that this is the same algorithm
used by the novice to solve the problem in question (Anderson, 1993). Tzelgov et
al. (1996) proposed that automaticity might reflect either one of these mecha-
nisms: memory retrieval or algorithmic processing.
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Accordingly, it is possible to propose that the distance effect and the size con-
gruity effect reflect these two different mechanisms. The distance effect reflects
an algorithmic process used to retrieve the required information from the num-
ber line. Dehaene and his colleagues (Dehaene, 1989; Dehaene, Depoux, &
Mehler, 1990) described such an algorithm. They suggested that digits are first
mapped into quantities on an analogical number line. The comparison between
the digits is conducted by a look-up process that probes the quantities on the
number line. The variable that plays a major role in this algorithm is the analog-
ical distance among the translated quantities, the further the quantities are locat-
ed on the number line the easier it is to decide which one is larger. In contrast,
the size congruity effect reflects retrieval from memory of accumulated
instances involving comparisons of two numbers. According to Logan’s instance
theory, performance reflects direct retrieval of instances of the many stimulus-
specific traces stored during acquisition. We can assume that instances of phys-
ical comparisons and of internal representations of magnitude begin to accumu-
late from early infancy (Gallistel & Gelman, 1992; Siegler, 1986; Sophian, 1998;
Sophian, Garyantes, & Chang, 1997; Strauss & Curtis, 1981; Wynn, 1992, 1995;
Yonas, Granrud, & Pettersen, 1985). However, instances of comparisons
between numerical values of Arabic digits begin to accumulate later, only when
these digits are studied. With practice we accumulate instances where Arabic
digits indicate large or small quantities (e.g., in the pair 1-2, 2 is larger and in the
pair 6-4, 6 is larger) and these can be retrieved later from memory. Note that this
model (i.e., the two representations model) suggests that extracting an analogi-
cal distance and a gross estimation of numerical values (large vs small) are two
different processes that involve two different mechanisms. The fact that there is
a size congruity effect and no distance effect when numerical values are irrele-
vant (Henik & Tzelgov, 1982) can be explained by Logan’s (1988) assumption
that in the race between memory-retrieval and algorithm-based processes, the
former usually wins. That is, both mechanisms may be applied to the irrelevant
(numerical) dimension but only the instance-based information (i.e., large/small
quantities) will have an effect and will be processed in an autonomous automat-
ic fashion. With respect to numerical comparisons, the requirement to attend to
the numerical dimension entices participants to use the algorithmic process to
retrieve the required information from the number line (Dehaene, 1989;
Dehaene, Depoux, & Mehler, 1990), thus creating the distance effect. This fits
the results recently found in a training study by Tzelgov et al. (2000) and the
notion that the algorithmic process is done in an intentional automatic fashion.
Tzelgov et al. (2000) trained participants to perform magnitude judgments on
Gibson figures. Even the group of participants who were trained not only with
adjacent pairs but also with instances of nonadjacent pairs showed a distance
effect in semantic (numerical) comparisons and a size congruity effect in physi-
cal comparisons. Note that the two representations model suggests an asymme-
try between size congruity and distance effects: While one may expect a distance
effect with no size congruity, the opposite is not expected.
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In contrast, the unitary representation model suggests that size congruity and
distance effects reflect two stages in the process of accessing the single internal
representation of the number line (e.g., Banks, 1977). The decision regarding
which digit is larger is done in two steps: the first one is faster and the second is
much slower. In the first and fast stage, participants decide in a very crude and
general way which numeral is “large” or “small.” When the two numbers are
close together, so that the first step does not distinguish between them (e.g., the
two have the “large” tag), another process is applied producing a more refined
result. In order to get a size congruity effect there is no need to activate the refined
process. The crude and fast process, that produces the “large” or “small” classifi-
cation, is enough to yield this effect. This model suggests an asymmetry between
size congruity and distance effects: While one may expect a size congruity with
no distance effect, it is impossible to find a distance effect with no size congruity
effect.

Note that the two models suggest asymmetries between size congruity and dis-
tance effects, but these asymmetries are in opposite directions. Moreover, in
adults we always find both effects (a distance effect in numerical judgments and
a size congruity effect in physical judgments). Hence, it is impossible to tease
these two models apart by the data reported in the literature so far. It should be
possible to test these two models by examining young children in early stages of
number skills development.

THE CURRENT STUDY

We designed a study to look at both size congruity and distance effects. In
order to examine the distance effect we used three numerical distances of 1 (e.g.,
2 3), 2 (e.g., 2 4), and 4 (e.g., 2 6). Moreover, numerical distance was manipulat-
ed independently of the congruence between the physical and the numerical
dimensions of the stimuli. This let us examine the development of these two
aspects of automaticity in young children. In addition, we used two groups of
first-grade children: those at the beginning of grade one and those at the end of
this grade. This let us look more closely at this age group, where we expected to
find major changes due to both maturation and schooling.

We asked our participants, ages 6 to 23 years old, to compare numerical stim-
uli. The two digits displayed varied along both numerical and physical dimen-
sions. The participants evaluated (in different blocks) the physical size or the
numerical value of the digits.

We also looked at the interference and facilitatory components of the size
congruity effect by using neutral conditions. One can compare the neutral
stimuli to the incongruent stimuli in order to examine the interference com-
ponent, and one can compare the neutral stimuli with the congruent stimuli in
order to examine the facilitatory component. We wanted to examine these
aspects of the effects because Posner (1978) suggested that facilitation is an
indicator of automaticity while interference might reflect more attentional
processing.
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Method

Participants. Five groups, with 16 participants each, were examined: (1) begin-
ning of first grade students (mean age 6.25,SD 5 0.43; 9 females and 7 males;
medium socioeconomic status), (2) end of first grade students (mean age 7.32,SD
5 0.43; 9 females and 7 males; medium socioeconomic status), (3) third grade
students (mean age 8.82,SD5 0.52; 8 females and 8 males; medium socioeco-
nomic status), (4) fifth grade students (mean age 11,SD5 0.5; 10 females and 6
males; medium socioeconomic status), and (5) university students (mean age
22.8,SD5 2.4; 12 females and 4 males; medium socioeconomic status). All par-
ticipants had intact or corrected vision. The first four groups were selected from
the same school. According to the school psychologist, all children had a normal
IQ and none of them had any attention or memory problems. The fifth group was
composed of students from Ben-Gurion University of the Negev who participat-
ed in the experiment in partial fulfillment of a course requirement.

Stimuli. A computer display stimulus consisted of two digits that appeared cen-
tered around a temporary fixation point. The center-to-center distance between
the two digits was 10 mm. Each participant performed two kinds of comparisons.
In one, the relevant dimension was physical size, and in the other, numerical
value. In every block there were 108 different stimuli that were presented twice
(a total of 216 stimuli in every block). Within the set of stimuli prepared for
numerical or physical comparison, each digit and each physical size appeared on
both sides of the visual field an equal number of times. The 108 stimuli included
36 congruent, 36 incongruent, and 36 neutral pairs of digits. A congruent stimu-
lus was defined as a pair of digits in which a given digit was larger on both the
relevant and irrelevant dimensions (e.g., 5 3). A neutral stimulus was defined as a
pair of digits that differed only on the relevant dimension (e.g.,5 2 for the numer-
ical comparisons or 5 5 for the physical comparisons). An incongruent stimulus
was defined as a pair of digits in which a given digit was simultaneously larger
on one dimension and smaller on the other (e.g.,5 2). The digits 2 through 8 were
used. The two digits in each pair could be of the same physical size (in which case
the pair served as a neutral for numerical comparisons) or could differ in height
(physical dimension) by 1 mm (one digit was 6 mm and the other was 7 mm) or
by 2 mm (one digit was 7 mm and the other was 9 mm). In addition, the two dig-
its in each pair could be of the same numerical value (in which case the pair
served as a neutral for physical comparisons) or could differ in numerical dis-
tance. There were three numerical distances: 1 (the digits 6-7, 4-5, and 2-3), 2 (the
digits 6-8, 3-5, and 2-4), or 4 (the digits 4-8, 3-7, and 2-6). Accordingly, each dis-
tance included three different pairs of digits. In short, each block had 18 different
possible conditions (2 physical sizes, 3 numerical distances, and 3 congruency
conditions). Each condition had 12 trials for a total of 216 trials per block.

While the congruent and incongruent trials were the same for the two compar-
ison tasks, the neutral stimuli were different for the two comparisons. Neutral
stimuli in the physical comparisonincluded the same digit in two different phys-
ical sizes. In order to keep the factorial design we created the neutral stimuli from

ARABIC NUMERALS AND DEVELOPMENT 81



the digits that were used for the other two conditions (congruent and incongru-
ent). For example, because the pair 2-3 was used to produce congruent and incon-
gruent stimuli for a numerical distance of 1 unit, neutral pairs created by using
these two digits (i.e.,2 2 and 3 3) were included in the analysis as neutral trials
for numerical distance 1. Similarly, because the pair 3-5 was used to produce the
congruent and incongruent conditions for a numerical distance of 2 units, neutral
pairs created by using these two digits (i.e.,3 3 and 5 5) were included in the
analysis as neutral trials for numerical distance 2. Each digit from all three pairs
of a given numeric distance was used to create four stimuli. For example, the digit
2 was presented in four stimuli: it was included twice in the analysis as a neutral
trial for physical distance of 1 mm (e.g.,2-2: one digit of the pair was 6 mm and
the other 7 mm) and twice it was included in the analysis as a neutral trial for
physical distance of 2 mm (e.g.,2 2: one digit of the pair was 7 mm and the other
9 mm). In this way the comparison between the congruent, incongruent, and neu-
tral conditions was made by using the same digits.

Neutral stimuli in the numerical comparisonincluded two digits that were dif-
ferent in numerical value but of the same physical size. In order to keep the facto-
rial design we created the neutral stimuli from the digits and physical sizes that
were used for the other two conditions (congruent and incongruent). For example,
the pair 2-3 was used to produce congruent and incongruent stimuli for a numeri-
cal distance of 1 unit. Hence, neutral pairs created by using these two digits (i.e.,
2 3) were included in the analysis as neutral trials for a physical distance of 1 and
2 mm. For a physical distance of 1 the two digits (2 3) were presented twice in a
6-mm height and twice in a 7-mm height. For a physical distance of 2, the two dig-
its (2 3) were presented twice in a 7-mm height and twice in a 9-mm height.
Accordingly, the 7-mm stimuli were divided among the two conditions: half of
them were stimuli for a distance of a 1 mm unit and half of them for a distance of
a 2-mm unit. In this way the comparison between the congruent, incongruent, and
neutral conditions was made using the same physical sizes.

Before every experimental block participants were presented with 36 practice
trials. This block was similar to the experimental block with the following excep-
tions: (1) We used different Arabic numerals as stimuli. For numerical distances
of 1 unit the digits were 3-4 and 5-6, for numerical distances of 2 units the digits
were 4-6 and 5-7, and for numerical distances of 4 units the digits were 1-5 and
5-9. (2) Of the 48 possible congruent trials (2 physical sizes 3 3 numerical dif-
ferences 3 2 stimuli per numerical distance 32 opposite sides of fixation 3 2
presentations) we randomly chose 12 trials. The same was done for the 48 possi-
ble incongruent and neutral trials.

Design. The variables manipulated were group (beginning of first grade, end of
first grade, third grade, fifth grade, and university students), relevant dimension
(physical vs numerical), physical distance (distance of 1 mm or 2 mm), numeri-
cal distance (1, 2, or 4) and congruity (incongruent, neutral, or congruent). Thus,
we had a 5 32 3 2 3 3 3 3 factorial design. Group was the only between-par-
ticipants variable.
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Procedure. The participant’s task was to decide which of two digits in a given
display was larger. Each participant took part in one session composed of two dif-
ferent blocks. In one block “larger” was defined by physical size and in the other,
it was defined by numerical value. The stimuli in each block were presented in a
random order. Half of the participants performed physical comparisons first, and
the other half performed numerical comparisons first. Before the experiment
began, participants were given a practice block. The participants were asked to
respond as quickly as possible but to avoid errors. They indicated their choices by
pressing one of two keys corresponding to the side of the display with the chosen
digit.

Each trial began with a fixation point presented for 300 ms. Five hundred mil-
liseconds after the fixation point was eliminated, a pair of digits appeared and
remained in view until the participant pressed a key (but not for more than 5000
ms). A new stimulus appeared 1500 ms after the participant’s response.

Results

Error rates were generally low (at the beginning of first grade there were 6.8%
errors, at the end of first grade there were 6.3%, third grade had 2.7% errors, fifth
grade had 3% errors, and university students had 2.5% errors) and therefore were
not analyzed. For every participant in each condition the mean RT was calculat-
ed (for correct trials only). These means were subjected to a five-way analysis of
variance (ANOVA) with group as the only between-subject factor and relevant
dimension, physical distance, numerical distance, and congruity as within-subject
factors.

All five main effects were significant. Speed of processing increased with age
(mean RT for children at the beginning of first grade: 1375 ms; end of first grade:
1150 ms; third grade: 875 ms; fifth grade: 773 ms; and university students: 525
ms) [F(4, 75) 5 148, MSE 5 424,280,p , .001]. Physical comparisons were
made 257 ms faster than numerical comparisons [F(1, 75) 5 194.28,MSE 5
266,851,p , .001]. Participants responded faster to a large physical distance than
to a small physical distance (mean RT for physical distance of 1 mm: 960 ms; and
for physical distance of 2 mm: 920 ms) [F(1, 75) 5 88.3,MSE5 13,201,p ,
.001]. Similarly, participants responded faster to large numerical distances than to
small ones (mean RT of numerical distance of 1 unit: 963 ms; 2 units: 940 ms;
and 4 units: 917 ms) [F(2, 150) 5 48.5,MSE5 10,159,p , .001]. There was a
significant congruity effect [F(2, 150) 5 147.1,MSE5 34,751,p , .001] with
mean RTs of 1013, 940, and 867 ms for incongruent, neutral, and congruent pairs,
respectively.

The interaction between group and relevant dimension was significant [F(4,
75) 5 14.9,MSE5 36,004,p , .001]. Physical comparisons were always made
faster than numerical comparisons, however, in separate comparisons of adjacent
groups we found that the difference between physical and numerical judgments
decreased as age increased. The difference in time between numerical and phys-
ical judgments was 128 ms smaller at the end of first grade compared with the
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beginning of first grade, 39 ms smaller in third grade compared with end of first
grade, and 111 ms smaller in fifth grade compared with third grade [F(1, 75) 5
19.19, MSE 5 13,201,p , .001; F(1, 75) 5 8.9, MSE 5 13,201,p , .01;
F(1, 75) 5 7.05,MSE5 13,201,p , .01, respectively]. No such significant dif-
ference was found between university students and fifth grade students.

The interaction between group, relevant dimension, and congruity was signifi-
cant [F(8, 150) 5 2.9,MSE5 37,210,p , .01] and is presented in Fig. 1. Since
one of the main interests of this experiment was to study the development of auto-
matic activation of numbers, we examined the simple interaction effects of con-
gruity X group for each relevant dimension separately. The interaction between
congruity and group was significant both when the relevant dimension was
numerical [F(8, 150) 5 2.3,MSE5 28,727,p , .05] and when it was physical
[F(8, 150) 5 4.16,MSE5 43,233,p , .001]. Hence, within each relevant dimen-
sion, we computed the simple simple main effects of the congruent variable for
the five groups. In the numerical comparison all simple simple main effects were
significant [beginning of first grade:F(2, 30) 5 11.5,MSE5 57,166,p , .001;
end of first grade:F(2, 30) 5 20.9,MSE5 50,872,p , .001; third grade:F(2,
30) 5 59.2, MSE 5 15,364,p , .001; fifth grade:F(2, 30) 5 51.9, MSE 5

FIG. 1. The size congruity effect:mean reaction time as a function of group (grade), relevant
dimension (task) and congruity. Each graph box belongs to a different age group, where G 5 grade;
B 5 beginning of school year; E 5 end of school year; and U 5 undergraduate students. Relevant
dimensions are N, indicating numeric, and P, indicating physical.
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16,052,p , .001; and university students:F(2, 30) 5 68.9,MSE5 4,180,p ,
.001]. In the physical comparison all simple simple main effects of the congruity
variable were significant except for the simple simple main effect in the begin-
ning of first grade [end of first grade:F(2, 30) 5 22.6,MSE5 12,726,p , .001;
third grade:F(2, 30) 5 8.5, MSE5 49,501,p , .001; fifth grade:F(2, 30) 5
22.8,MSE5 47,425,p , .001 and university students:F(2, 30) 5 26.3,MSE5
26,407,p , .001]. We continued by analyzing the congruity variable within each
relevant dimension.

Physical comparisons (numerical dimension is irrelevant). As can be seen in
Fig. 1 (right side in each panel), the congruity effect starts to appear only at the
end of the first grade [F(1, 75) 5 12.5,MSE5 41,502,p , .001]. At this time
the size congruity effect (incongruent vs congruent) is composed mainly of an
interference component (incongruent relative to neutral) [F(1, 75) 5 5.07,MSE5
58,629,p , .05]. From the end of first grade until the third grade no significant
change in the congruity effect is seen, nonetheless, a facilitatory component (con-
gruent relative to neutral) appears in the third grade [F(1, 75) 5 5.95,MSE5
29,569,p , .01]. Both facilitation and interference are shown by fifth grade [F(1,
75) 5 17.86,MSE5 29,569,p , .001 and F(1, 75) 5 9.48,MSE5 58,629,p ,
.01, respectively] and by university students [F(1, 75) 5 3.6,MSE5 29,569,p ,
.01; and F(1, 75) 5 9.25,MSE5 58,629,p , .01, respectively]. However, the
size congruity effect is larger in the fifth grade (233 ms) compared with the third
grade (154 ms) [F(1, 65) 5 3.7,MSE5 41,502,p , .05].

Numerical comparison (physical dimension is irrelevant). At the beginning of
first grade the size congruity effect [F(1, 75) 5 28.6,MSE5 39,385,p , .001]
is composed mainly of a facilitatory component [F(1, 75) 5 36.4,MSE5 22,485,
p , .001]. From the end of first grade an interference component appears also
[size congruity effect at the end of first grade:F(1, 75) 5 53, MSE5 39,385,p
, .001; inhibitory component:F(1, 75) 5 22,MSE5 24,312,p , .001 and facil-
itatory component:F(1, 75) 5 23.4,MSE5 22,485,p , .001].

The distance effectis indicated by the interaction of relevant dimension 3
numerical distance [F(2, 150) 5 33.7,MSE5 13,458,p , .001] and is present-
ed in Fig. 2. The numerical distance is significant only in the numerical block
(when numerical dimension is relevant) [F(1, 75) 5 99.4,MSE5 22,024,p ,
.001] but not in the physical block. Group does not modulate this effect. The dis-
tance effect is one indication of automatic activation of a symbolic dimension,
and therefore, may help in tracing the developmental changes in automatic pro-
cessing of Arabic numerals. Thus, though the interaction with group was not sig-
nificant (F, 1), the interaction between numerical distance and relevant dimen-
sion was tested separately for each group of participants. The distance effect was
found to be significant in each one of the five groups: beginning of first grade
[F(2, 30) 5 3.44,MSE5 36,868,p , .05], end of first grade [F(2, 30) 5 8.15,
MSE5 12,455,p , .001], third grade [F(2, 30) 5 13.3,MSE5 8,473,p , .001],
fifth grade [F(2, 30) 5 9.8, MSE 5 7,182,p , .001], and university students
[F(2, 30) 5 40.4,MSE5 2,310,p , .001].
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Discussion

Let us summarize the main results: (1) Speed of processing increases with age
and the difference between RTs in physical and numerical tasks decreases with
age. (2) When the physical dimension is relevant, a size congruity effect does not
appear at the beginning of first grade. About 7 to 8 months later, numerically irrel-
evant information interferes with physical judgments. Thus, a size congruity
effect starts to appear only at the end of first grade and is interference based. In
the third grade a facilitatory component appears also. (3) A size congruity effect
is found from the beginning of first grade, when the numerical dimension is rel-
evant. (4) The numerical distance effect appears regardless of grade.

Size congruity, distance, and automaticity. We found an asymmetry between
size congruity and distance effects at the beginning of first grade: There was a dis-
tance effect with no size congruity effect. These results support the two represen-
tations model. As mentioned in the introduction, this model suggests that young
children, as well as adults, develop two different representationsof numerical val-
ues. The first representation is an internal number line and is reflected in the dis-
tance effect. This representation can be accessed through an algorithmic process in
an intentional autonomic fashion. First the digits are mapped into quantities on an
analogical number line, which is used in turn to compare the digits. This compar-
ison is conducted by a look-up process that probes the quantities on the number
line. Since it is easier to compare quantities that are located far away from one
another on this line than quantities that are located closer to one another on the
line, there is a distance effect (Dehaene, 1989; Dehaene, Depoux, & Mehler,
1990). The second representation is composed of instances of Arabic numerals.
These instances enable one to classify numerals as “large” or “small.” This repre-
sentation can be accessed through a memory-based process of instance awakening
in an autonomous automatic fashion. The comparative judgement decision differs

FIG. 2. The distance effect:mean reaction time as a function of relevant dimension (task) and
numerical distance.



for these two representations. We apply an algorithmic-based process (Dehaene,
1989; Dehaene, Depoux, & Mehler, 1990) to the number scale and a memory
retrieval process (Logan, 1988) to the memory-based representation. There is the
ability to access each one of the two representations independently.

At the beginning of first grade, children are perfectly able to make a “large” vs
“small” classification of quantities and objects, but they have not yet accumulated
many instances of comparisons between numerical values of Arabic digits. Hence,
their ability to judge which of two Arabic digits is the larger one cannot be
retrieved from memory in a single step (i.e., in an autonomous automatic fashion)
(Logan, 1988). Therefore, the irrelevant numerical value had no effect, so that size
congruity did not appear in the physical task at the beginning of first grade. In con-
trast, during their first 6 years of life, young children develop the algorithm-based
process, which exploits the internal scale (Gallistel & Gelman, 1992; Siegler,
1986; Sophian, 1998; Sophian, Garyantes, & Chang, 1997; Strauss & Curtis,
1981; Wynn, 1992, 1995). This algorithm-based process is reflected in the distance
effect (beginning of first grade) (see also Duncan & McFarland, 1980; Huntley-
Fenner & Cannon, 2000; Sekular & Mierkiewicz, 1977; Temple & Posner, 1998;
Xu & Spelke, 2000). It is important to note that the distance effect appears only
when numerical values are relevant and not when they are irrelevant (physical
judgements). This can be explained by Logan’s (1988) assumption that in the race
between memory retrieval and algorithm based processes, the former usually wins.
However, when the task requires attending to the numerical dimension, partici-
pants use the algorithmic process to retrieve the required information from the
number line. As we suggested earlier, this algorithmic process is done in an inten-
tional automatic fashion (Tzelgov, Henik, Sneg, & Baruch, 1996) and is reflected
in the distance effect in the numerical comparisons.

Young children are slower to respond than older children. What accounts for
this difference? One reason could be that the association of size (physical or
numerical) with an arbitrary key-press is much more difficult for younger chil-
dren (see Kail, 1991). However, despite these slower responses, there is a bigger
difference between the slow numerical processing and the fast physical process-
ing in young children than in older children. Hence, at an early age, the ability to
confront a physical dimension is very different from the ability to confront a
numerical dimension and it may rely on memory retrieval of instances (assuming
that instances of physical comparisons accumulate earlier) (Yonas, Granrud, &
Pettersen, 1985). As age increases instances of comparisons of numerical values
of Arabic digits begin to accumulate and therefore are processed much like phys-
ical sizes. Considering the fact that physical sizes are automatically processed
from infancy (Yonas, Granrud, & Pettersen, 1985), we argue that as age increas-
es, numerical values of Arabic digits are being processed faster and in an
autonomous automatic fashion, similar to the processing of physical sizes.

Furthermore, several reports have suggested dissociation between the interfer-
ence and the facilitatory components of the Stroop effect (Henik, Singh, Beckley,
& Rafal, 1993; Lindsay & Jacoby, 1994; Posner, 1978; Tzelgov, Henik, & Berger,
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1992). The facilitatory component is supposed to involve processes that are more
automatic since they are less subjected to strategic control (for example, see
Tzelgov, Henik, & Berger, 1992). Accordingly, our results show that at the end of
first grade, size congruity in the physical task (when the numerical dimension was
irrelevant) was composed of an interference component, and only in third grade the
facilitation component appeared also. Hence, the ability to categorized Arabic
numerals as “large” or “small” develops with age and becomes automatic at a more
advanced age. As suggested earlier, the automaticity of classifying digits as “large”
vs “small” depends on the accumulation of instances in memory so that such clas-
sification can be retrieved from memory in a single step (Logan, 1988). Note that
in the numerical task (when the physical dimension was irrelevant), size congruity
was composed only of a facilitation component at the beginning of first grade. As
mentioned earlier, physical sizes are automatically processed from a very early age
(Yonas, Granrud, & Pettersen, 1985), therefore the facilitation component, which is
more automatic in nature, appeared earlier than the facilitation component in the
physical task (when numerical values were irrelevant).

As seen under Results, the numerical comparisons were significantly slower
than the physical comparisons. It might be argued that there is a memory-based
process from the beginning of first grade in which classification of “large” vs
“small” of numerical values is done. In this case access to these representations
might not be completed in time to interfere with the physical comparison. We
believe that our results support the idea that numerical processing at the begin-
ning of first grade is not yet automatic, at least not for the crude classifications of
magnitudes into “large” or “small” (which is memory based). Hasher and Zacks
(1979) and Logan (1988) argued that the degree of automaticity is reflected in the
speed of processing and correlates with proficiency; as skill develops processing
becomes faster and might be produced in a single step. Logan (1988) suggested
that the memory-based mechanism develop with practice. Since we found that the
speed of processing increases with age, we argue, according to Hasher and Zacks
(1979) and Logan (1988), that in a more advanced age and with school practice,
the ability to classify Arabic digits into “large” or “small” becomes autonomous
automatic and those instances can be retrieved from memory in a single step.

Maturation or schooling. One may argue that the significant improvement in
number processing in first grade may be due to maturational factors. This idea is
consistent with the slow maturation of frontal areas in the brain, which reach full
development only at the age of 7 years old (Diamond, 1992; Thatcher, 1991). At
this age, the participants in our experiment were at the end of first grade, when
size congruity started to appear. The design of our study does not allow us to sep-
arate maturing and schooling effects. However, the argument that changes in chil-
dren’s numerical knowledge are influenced only by maturation is inconsistent
with two other findings. First, there was a marginally significant difference in the
size congruity effect between third and fifth grade participants. Mean ages in
these groups were 8.8 and 11 years old in the third and fifth grades, respectively.
By this time in life, brain areas that are related to size comparisons have reached
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their full development. Temple and Posner (1998), for example, found that the
brain area responsible for abstract representation of Arabic numerals and arrays
of dots is located in the inferior parietal area of the brain. This area develops and
is responsive to number comparison before 5 years of age and before formal
mathematical training. Second, the fact that a distance effect but not a size con-
gruity effect was found in all ages might imply that schooling improves the abil-
ity to access the internal magnitudes, at least to those symbols that indicate large
or small quantities. The subcomponents of skilled performance, which become
automatic with practice, are supposed to serve the skilled performer by being exe-
cuted effortlessly and faster (Hasher & Zacks, 1979; Shiffrin & Schneider, 1977).
Accordingly, the degree of skill acquired during learning at school might have
influenced the speed taken to classify the Arabic digits into a “large” vs “small”
scale. Thus, the distance effect but not the size congruity effect appeared in young
children who were not highly skilled with the use of Arabic digits.

Moreover, Griffin, Case, and Capodilupo (1995) have shown that children who
lack central numerical concepts did not succeed in formal mathematical instruc-
tion. After these concepts had been taught these children developed an internal
representation of magnitude and, thus, performed as well as children who had
firm numerical concepts. This indicates that numerical knowledge may be influ-
enced by schooling and not only by maturing.

The study of Girelli et al. (2000). Our results are similar to the results found in
the experiments of Girelli, Lucangeli, and Butterworth (2000) (see also
Butterworth, 1999). Both studies found a size congruity effect in the earliest age
group, that is, beginning of first grade in our experiment and 4-year-old children
in Butterworth’s (1999) experiment in the numerical task (when the physical
dimension was irrelevant). However, Girelli, Lucangeli, and Butterworth (2000)
did not find a size congruity effect in the first grade group in the physical task
(when the numerical dimension was irrelevant). Since we divided the first grade
children into two groups, that is, beginning and end of first grade, we were able to
find that a size congruity effect starts to appear at the end of first grade, earlier than
argued by Girelli, Lucangeli, and Butterworth. In addition, in contrast with Girelli,
Lucangeli, and Butterworth, we used three different numerical distances, that is,
numerical distances of 1, 2, or 4. The use of three numerical distances enables one
to examine the idea that distance has a monotonic relationship with responding.
Had we used only two distances we would not have been able to rule out nonmo-
notonic relations. Hence, using three numerical distances enabled us to study
developmental changes in the distance effect rather than only the laterality effect.

It should be noted that Girelli, Lucangeli, and Butterworth (2000) examined
the effect of laterality by comparing bilateral pairs (i.e., one digit was smaller and
the other larger than 5) and unilateral pairs (i.e., both digits either smaller or larg-
er than 5). For the bilateral stimuli they employed pairs with distance 5 (e.g., 1 6),
while for the unilateral stimuli they employed pairs with distance 1 (e.g., 1 2).
Thus, it is possible to examine effects of distance by comparing these two condi-
tions. The authors did report a significant effect of laterality (i.e., RTs to bilater-
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al pairs were shorter than RTs to unilateral pairs) in numerical comparisons,
regardless of age. However, this arrangement confounds laterality and distance,
so the fact that bilateral pairs were responded to faster than unilateral pairs may
be due either to the influence of laterality or to the distance effect. Our design
included three numerical distances: 1 and 2 for unilateral pairs (6-7, 4-5, and 2-3
and 6-8, 3-5, and 2-4) and 4 for bilateral pairs (4-8, 3-7, and 2-6). In order to
examine effects of distance that are not confounded by laterality, we compared
only unilateral pairs with distances 1 and 2. The results of these analyses support
the conclusions presented previously. Examination of the numerical task showed
a significant distance effect regardless of group [F(1, 75) 5 10.21, MSE 5
12,164.8,p , .05]. Despite the lack of interaction with group we compared
responses to these two distances in the youngest group of participants (i.e., begin-
ning of first grade). Within this group RTs to distance 1 (1603 ms) were signifi-
cantly slower than RTs to distance 2 (1570 ms) [F(1, 75) 5 8.2,MSE5 17,839,
p , .05]. This suggests that at the beginning of first grade children do show the
distance effect, independent of any laterality effect.

CONCLUSIONS

To summarize, we presented a model of internal representation of numbers
according to which there are two different internal representations of magnitude
(the number scale and the instance of pairs of digits) which are retrieved by dif-
ferent processes.

We can conclude by saying that our results help understand the development of
automatic processing of numerical information. The ability to understand and
automatically process the quantitative values of Arabic numerals may play an
important role in the acquisition and implementation of skilled calculation
(Griffin, Case, & Capodilupo, 1995). Understanding the development of these
abilities may have profound implications for theories of education and child
development in the field of number processing.
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