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The Development of Internal Representations of Magnitude
and Their Association with Arabic Numerals
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Developmental aspects of number concepts were evaluated using participants from the
beginning and end of first grade (6—7 years old), third and fifth grades (7—11 years old),
and university (22 years old). Participants evaluated the numerical value or physical size
of stimuli varying along both dimensions. The numerical distance effect appeared in all
groups. In contrast, the size congruity effect started to appear only at the end of first grade.
Based on our results, a model of internal representation of magnitude claiming that there
are two different representations was propose. At the beginning of first grade children can
automatically access only one of these representations and only from the end of first grade
can they access both of these representatiangoo2 Elsevier Science
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Moyer and Landauer (1967) were the first to find that the larger the numeris
difference between two digits, the shorter the time required to decide which
larger. For example, it takes longer to decide that “8” is larger than “6” than
decide that “8” is larger than “1.” This distance effleat since been reported in
numerous studies (e.g., Banks, Mermelstein, & Yu, 1982; Dehaene, 19¢
Dehaene, Dupoux, & Mehler, 1990; Duncan & McFarland, 1980; Henik ¢
Tzelgov, 1982; Link, 1990; Moyer, 1973; Moyer & Bayer, 1976; Parkman, 197
Schwarz & Heinze, 1998; Tzelgov, Meyer, & Henik, 1992). Dehaene (199
trained university students to avoid the distance effect and found that even &
1600 training trials, participants were still slower with close digits than with mo
distant ones. Moyer and Landauer (1967) suggested that people convert wri
or auditory numbers into analog magnitudes. The comparison between tt
magnitudes is made in much the same way that comparisons are made bet
physical stimuli such as lengths of lines. It has been postulated that the sourc
the distance effect is the overlap between representations of numbers. That is
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internal semantic representations of close numbers, such as “1” and “2,” ovel
more than those of more distant numbers (Dehaene & Changeux, 1993; Gall
& Gelman, 1992). Several investigators argue that numerals or semantic size:
directly represented in a linear order (Rabinowits, Grant, Howe, & Walsh, 19¢
Tzelgov, Yehene, Kotler, & Alon, 2000). In addition, it is suggested that not on
do numbers map onto internal magnitudes or quantitative values, but also that
mapping is automatic (Dehaene, 1992; Dehaene & Akhavein, 1995; Henik
Tzelgov, 1982; Tzelgov, Meyer, & Henik, 1992; Zbrodoff & Logan, 1986).

What is automaticity? Posner (1978) likened automaticity to reflexive behe
ior and suggested three indicators for such activity: automatic processes o
without intention and without conscious awareness, and they can run in pare
with other cognitive processes since they do not require attention in order tc
executed (see also Hasher & Zacks, 1979). However, these classic requirern
have been criticized during the past decades (e.g., Carr, 1992; Logan, 198E
has been shown that automatic processes are sensitive to attentional requirer
and expectations (Zbrodoff & Logan, 1986). Tzelgov, Henik, Sneg, and Baru
(1996) suggested that a process is automatic if it does not need monitoring t
executed. That is, once the process is triggered, either by intention or by exte
unintentional stimulation, it runs by itself without the need of conscious mor
toring.

Several researchers argued that the distance effect indicates automatic pro
ing. For example, Dehaene and Akhavein (1995) argued that the distance e
indicates that the representation of number magnitude is automatically acce:
whether or not the task requires the use of numerical values. The participant
their experiment had to decide whether two digits presented together (e.g., 3-
three-3) were identical. The distance effect was obtained in most trials. Anot
effect that indicates automaticity of processing the numerical value of dig
appears in a Stroop-like paradigm. In this paradigm participants are shown p
of Arabic numerals and asked to decide which of the two numerals is larg
Participants are asked to relate to the physical size of the digits and to ignore
numerical value, or they can be asked to relate to the numerical value of the
its and ignore their physical size. The two digits can be incongruent, congru
or neutral. In the congruent trials the numerically larger numeral is also phy
cally larger (e.g., 2), in the incongruent trials the numerically larger numeral i
physically smaller (e.g52), and in the neutral trials only the physical size is dif
ferent and the digits have the same numerical value or the other way around (
55 ors 2, for physical comparisons and numerical comparisons, respectivel
Thesize congruity effe¢Paivio, 1975), an indication for automatic processing o
the irrelevant dimension, is manifested by shorter reaction times (RT) for cc
gruent trials than for incongruent trials (Besner & Coltheart, 1979; Dehael
1992; Henik & Tzelgov, 1982; Schwarz & Heinze, 1998; Tzelgov, Meyer, &
Henik, 1992). In general, the outcome of this Stroop-like paradigm suggests
automatic activation of numerical information. That is, when participants judq
the physical sizes of digits they cannot ignore their numerical values.
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Interestingly, the numerical distance between two digits influences perfor
anceonly in numerical judgments and is absent in physical judgments (Tzelg
Meyer, & Henik, 1992). In contrast, the size congruity effect is found in bot
numerical and physical judgments (Henik & Tzelgov, 1982; Tzelgov, Meyer, .
Henik, 1992). We should mention here that Dehaene and Akhavein (1995) fol
a distance effect even when the numerical value (semantic information) was ir
evant to their task. We believe that this finding does not necessarily contradict
common lack of distance effect in physical judgments in the Stroop-like pa
digm. Dehaene and Akhavein asked their participants to decide if two numb
(Arabic numerals or written words) were identical (in their form) or not. Physic
sizes were roughly the same. There were several differences between
same—different task employed by Dehaene and Akhavein and the Stroop-like |
adigm used in comparative judgements. These differences might have prodt
the different results. For example, Boucart and Humphteys (1994) have rece
suggested that processing of an irrelevant dimension is contingent upon
saliency of the relevant dimension. It is possible that global shape is less sal
and requires elaborate processing, which in turn entails processing of of
dimensions of the stimuli, like the numerical value. In contrast, physical comp:
isons involve a salient dimension, which in turn prevents semantic processing
the stimuli (e.g., numerical dimension).

One can distinguish between two modes of automatic processing. Whe
process is part of the task requirements it is intentional, whereas when it is
part of the task requirements (but nevertheless affects performance) it
autonomous (Tzelgov et al., 1996). Hence, the distance effect might be con
ered a product ahtentional automatic processirand the size congruity effect
might be considered a productaftonomous automatic processing

EARLY NUMERICAL DEVELOPMENT

The ability to automatically process the quantitative values of Arabic numer:
may play an important role in the acquisition and implementation of skilled c:
culation (Griffin, Case, & Capodilupo, 1995). Hence, studying this ability ha
important implications for theories of education and child development in tl
field of number processing. Accordingly, the current study examines develc
mental changes in the representations of magnitude and to what extent these
resentations are activated automatically.

It may be suggested that by the time children associate Arabic humerals v
symbolic values they already exhibit magnitude information that is independe
of formal school instruction. Piaget (1953) argued that “It is a great mistake
suppose that a child acquires the notion of numbers and other mathematical
cepts just from teaching. On the contrary, to a remarkable degree he deve
them himself independently and spontaneously” (p. 74; see also Piaget, 19
However, he believed that children are born without any preconceived idea ak
arithmetic. Only during the first 8 years, while manipulating collections ¢
objects in the environment, do they discover the true meaning of numbe
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Contrary to Piaget’s theory, there is some recent evidence that shows that
ceptual understanding of counting is present very early in life. Dehaene (19
summarized his book by saying that “. . . in children, numerical estimation, co
parison, counting, simple addition and abstraction all emerge spontaneously w
out much explicit instruction” (p. 245).

Gallistel and Gelman (1992) and Gelman (1978) suggested that preschool:
children possess a range of sophisticated quantitative abilities reflecting nurr
abstraction principles. Most studies in the field relate to this early knowledge
“preverbal counting” (Gallistel & Gelman, 1992; Whalen, Gallistel, & Gelman
1999), internal representation of magnitude (Gallistel & Gelman, 1992; Ta’
Bresner, & Ariel, 1997), or implicit knowledge (Gelman, 1982, 1994). Moreove
this implicit knowledge is evident in their behavior even if they cannot expres:s
explicitly. That is, this knowledge is activated automatically. An important que
tion is whether this implicit knowledge is activated when it is irrelevant to the ta
at hand. For example, will an irrelevant numerical value be activated in you
children so that it interferes with a relevant physical comparison?

Only a few studies tested the distance effect in children. Duncan a
McFarland (1980) asked children to decide whether two Arabic numerals w
identical. This task required a simple visual matching and yet the authors fol
a distance effect in participants from kindergarten, first grade, third grade, ¢
fifth grade. The authors argued that their findings suggest that children
young as 6 years old access magnitude information automatically. Temple
Posner (1998) found a distance effect in 5- and 9-year-old children. Sekular
Mierkiewicz (1977) found that the function relating judgment time to numer
cal difference is steeper for children in kindergarten and first grade relative
children in fourth and seventh grades. Huntley-Fenner and Cannon (20
found that 3 to 5-year-olds find it more difficult to discriminate arrays in a 2:
relationship than arrays in a 1:2 relationship. Even infants show the distal
effect: Xu and Spelke (2000) found that infants could discriminate 8 versus
items, but not 8 versus 12 items. Note that the distance effect indicates c
what was defined previously as intentional automatic processing (Tzelg
Henik, Sneg, & Baruch, 1996). A more stringent test of the automaticity
numerical processing (or autonomous automatic processing according to
same categorization) is to find if numerical values interfere with processi
when they are completely irrelevant to the task at hand. One possible sigr
this would be the size congruity effect of numerical values found in the Stroc
like paradigm. Girelli, Lucangeli, and Butterworth (2000) (see als
Butterworth, 1999) did not find a size congruity effect in the performance
first-grade children when the task was to compare the physical sizes of Are
numerals and to ignore their numerical values. The size congruity effe
emerged only in the third grade and was also significant in the fifth grade. Tt
argued that their findings indicate that children as young as 6 years old do
automatically access the quantitative values of Arabic numerals since num
cal values did not interfere with physical judgments. Note that there is anot
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measure of automaticity that was not discussed in their work, which is refle
ed in the distance effect (Dehaene & Akhavein, 1995). It should be noted t
Girelli, Lucangeli, and Butterworth (2000) examined the effect of lateralit
(and not distance) by comparing bilateral pairs (i.e., one digit was smaller ¢
the other larger than 5) and unilateral pairs (i.e., both digits either smaller
larger than 5). For the bilateral stimuli they employed pairs with distance
(e.g., 1 6), while for the unilateral stimuli they employed pairs with distance
(e.g., 1 2). The authors did report a significant effect of laterality (i.e., RTs
bilateral pairs were shorter than RTs to unilateral pairs) in numerical comp
isons regardless of age, which could indicate a distance effect. However, tf
experimental arrangement confounded laterality and distance, so the fact
bilateral pairs were responded to faster than unilateral pairs could have b
due either to the influence of laterality or to the distance effect. Hence, th
findings still cannot provide us with a very specific idea of how magnitudes a
internally represented in adults as well as in children.

It should be mentioned here that the Girelli, Lucangeli, and Butterworth (200
article was published when we had just finished running our experiment and
that time, we were unaware of its existence.

HOW CAN DISTANCE AND SIZE CONGRUITY EFFECTS
CONTRIBUTE TO THE UNDERSTANDING OF THE INTERNAL
REPRESENTATION OF MAGNITUDE?

As mentioned, the distance effect indicates automatic access of numerical
ues (Dehaene & Akhavein, 1995). Accordingly, one can ask, why does nof
interfere with physical size comparisons? There are two alternative answer:
this question. The first one suggests that these two effects (i.e., the size cong
effect and the distance effect) are dissociable because they indicate access t
different representationef internal numerical magnitude. The second sugges
that these two effects represent two stages in accemsinmternal representa-
tion of the number linéfor an example see, Banks, 1977). In what follows we
discuss these two hypotheses.

According to the two representations model, size congruity and distance effe
reflect accessing two representations of numerical magnitude that are qualitat
ly different. Theories of skill development assume that acquisition of a cogniti
skill starts by applying a mental algorithm: a set of mental computations aimec
solving the problem in question. During practice performance improves a
becomes automatic. The literature suggests two mechanisms that underlie
improvement with practice. Logan (1988) proposed that with practice we ac
mulate instances that can be later accessed easily. Automaticity reflects di
retrieval of these instances from memory. Others assume that practice gradt
improves the application of the algorithm. Note that this is the same algoritf
used by the novice to solve the problem in question (Anderson, 1993). Tzelgo
al. (1996) proposed that automaticity might reflect either one of these mec
nisms: memory retrieval or algorithmic processing.
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Accordingly, it is possible to propose that the distance effect and the size c
gruity effect reflect these two different mechanisms. The distance effect refle
an algorithmic process used to retrieve the required information from the nu
ber line. Dehaene and his colleagues (Dehaene, 1989; Dehaene, Depou:
Mehler, 1990) described such an algorithm. They suggested that digits are
mapped into quantities on an analogical number line. The comparison betw
the digits is conducted by a look-up process that probes the quantities on
number line. The variable that plays a major role in this algorithm is the anal
ical distance among the translated quantities, the further the quantities are lo
ed on the number line the easier it is to decide which one is larger. In contr
the size congruity effect reflects retrieval from memory of accumulate
instances involving comparisons of two numbers. According to Logan’s instar
theory, performance reflects direct retrieval of instances of the many stimul
specific traces stored during acquisition. We can assume that instances of p
ical comparisons and of internal representations of magnitude begin to accu
late from early infancy (Gallistel & Gelman, 1992; Siegler, 1986; Sophian, 199
Sophian, Garyantes, & Chang, 1997; Strauss & Curtis, 1981; Wynn, 1992, 19
Yonas, Granrud, & Pettersen, 1985). However, instances of comparisc
between numerical values of Arabic digits begin to accumulate later, only wh
these digits are studied. With practice we accumulate instances where Ar:
digits indicate large or small quantities (e.g., in the pair 1-2, 2 is larger and in |
pair 6-4, 6 is larger) and these can be retrieved later from memory. Note that
model (i.e., the two representations model) suggests that extracting an anal
cal distance and a gross estimation of numerical values (large vs small) are
different processes that involve two different mechanisms. The fact that ther:
a size congruity effect and no distance effect when numerical values are irr
vant (Henik & Tzelgov, 1982) can be explained by Logan’s (1988) assumpti
that in the race between memory-retrieval and algorithm-based processes
former usually wins. That is, both mechanisms may be applied to the irrelev
(numerical) dimension but only the instance-based information (i.e., large/sir
gquantities) will have an effect and will be processed in an autonomous auton
ic fashion. With respect to numerical comparisons, the requirement to attenc
the numerical dimension entices participants to use the algorithmic proces:
retrieve the required information from the number line (Dehaene, 19€
Dehaene, Depoux, & Mehler, 1990), thus creating the distance effect. This
the results recently found in a training study by Tzelgov et al. (2000) and |
notion that the algorithmic process is done in an intentional automatic fashi
Tzelgov et al. (2000) trained participants to perform magnitude judgments
Gibson figures. Even the group of participants who were trained not only w
adjacent pairs but also with instances of nonadjacent pairs showed a dist:
effect in semantic (numerical) comparisons and a size congruity effect in phy
cal comparisons. Note that the two representations model suggests an asyr
try between size congruity and distance effects: While one may expect a diste
effect with no size congruity, the opposite is not expected.
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In contrast, the unitary representation model suggests that size congruity
distance effects reflect two stages in the process of accessing the single inte
representation of the number line (e.g., Banks, 1977). The decision regarc
which digit is larger is done in two steps: the first one is faster and the secon
much slower. In the first and fast stage, participants decide in a very crude
general way which numeral is “large” or “small.” When the two numbers al
close together, so that the first step does not distinguish between them (e.g.
two have the “large” tag), another process is applied producing a more refir
result. In order to get a size congruity effect there is no need to activate the refi
process. The crude and fast process, that produces the “large” or “small” clas
cation, is enough to yield this effect. This model suggests an asymmetry betw
size congruity and distance effects: While one may expect a size congruity v
no distance effect, it is impossible to find a distance effect with no size congru
effect.

Note that the two models suggest asymmetries between size congruity and
tance effects, but these asymmetries are in opposite directions. Moreover
adults we always find both effects (a distance effect in numerical judgments «
a size congruity effect in physical judgments). Hence, it is impossible to tec
these two models apart by the data reported in the literature so far. It shoulc
possible to test these two models by examining young children in early stage
number skills development.

THE CURRENT STUDY

We designed a study to look at both size congruity and distance effects
order to examine the distance effect we used three numerical distances of 1 (
23),2(e.g.,24),and4 (e.g., 2 6). Moreover, numerical distance was manipu
ed independently of the congruence between the physical and the numel
dimensions of the stimuli. This let us examine the development of these t
aspects of automaticity in young children. In addition, we used two groups
first-grade children: those at the beginning of grade one and those at the en
this grade. This let us look more closely at this age group, where we expecte
find major changes due to both maturation and schooling.

We asked our participants, ages 6 to 23 years old, to compare numerical s
uli. The two digits displayed varied along both numerical and physical dime
sions. The participants evaluated (in different blocks) the physical size or |
numerical value of the digits.

We also looked at the interference and facilitatory components of the s
congruity effect by using neutral conditions. One can compare the neut
stimuli to the incongruent stimuli in order to examine the interference cor
ponent, and one can compare the neutral stimuli with the congruent stimul
order to examine the facilitatory component. We wanted to examine the
aspects of the effects because Posner (1978) suggested that facilitation i
indicator of automaticity while interference might reflect more attentione
processing.
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Method

Participants. Five groups, with 16 participants each, were examined: (1) beg
ning of first grade students (mean age 635,= 0.43; 9 females and 7 males;
medium socioeconomic status), (2) end of first grade students (mean ad&ly.32
= 0.43; 9 females and 7 males; medium socioeconomic status), (3) third gr
students (mean age 8.&D = 0.52; 8 females and 8 males; medium socioecc
nomic status), (4) fifth grade students (mean ag&Dls 0.5; 10 females and 6
males; medium socioeconomic status), and (5) university students (mean
22.8,SD = 2.4; 12 females and 4 males; medium socioeconomic status). All p
ticipants had intact or corrected vision. The first four groups were selected fr
the same school. According to the school psychologist, all children had a nor
IQ and none of them had any attention or memory problems. The fifth group v
composed of students from Ben-Gurion University of the Negev who particip
ed in the experiment in partial fulfillment of a course requirement.

Stimuli. A computer display stimulus consisted of two digits that appeared c
tered around a temporary fixation point. The center-to-center distance betw
the two digits was 10 mm. Each participant performed two kinds of compariso
In one, the relevant dimension was physical size, and in the other, numer
value. In every block there were 108 different stimuli that were presented tw
(a total of 216 stimuli in every block). Within the set of stimuli prepared fc
numerical or physical comparison, each digit and each physical size appeare
both sides of the visual field an equal number of times. The 108 stimuli incluc
36 congruent, 36 incongruent, and 36 neutral pairs of digits. A congruent stir
lus was defined as a pair of digits in which a given digit was larger on both 1
relevant and irrelevant dimensions (e.g).5A neutral stimulus was defined as a
pair of digits that differed only on the relevant dimension (e gfor the numer-
ical comparisons o8 5 for the physical comparisons). An incongruent stimulu:
was defined as a pair of digits in which a given digit was simultaneously lar
on one dimension and smaller on the other (82)., The digits 2 through 8 were
used. The two digits in each pair could be of the same physical size (in which c
the pair served as a neutral for numerical comparisons) or could differ in hei
(physical dimension) by 1 mm (one digit was 6 mm and the other was 7 mm)
by 2 mm (one digit was 7 mm and the other was 9 mm). In addition, the two d
its in each pair could be of the same numerical value (in which case the |
served as a neutral for physical comparisons) or could differ in numerical c
tance. There were three numerical distances: 1 (the digits 6-7, 4-5, and 2-3), 2
digits 6-8, 3-5, and 2-4), or 4 (the digits 4-8, 3-7, and 2-6). Accordingly, each d
tance included three different pairs of digits. In short, each block had 18 differ
possible conditions (2 physical sizes, 3 numerical distances, and 3 congrue
conditions). Each condition had 12 trials for a total of 216 trials per block.

While the congruent and incongruent trials were the same for the two comg
ison tasks, the neutral stimuli were different for the two comparisons. Neut
stimuli in the physical comparisancluded the same digit in two different phys-
ical sizes. In order to keep the factorial design we created the neutral stimuli fr
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the digits that were used for the other two conditions (congruent and incong
ent). For example, because the pair 2-3 was used to produce congruent and ir
gruent stimuli for a numerical distance of 1 unit, neutral pairs created by us
these two digits (i.e2 2 and3 3) were included in the analysis as neutral trials
for numerical distance 1. Similarly, because the pair 3-5 was used to produce
congruent and incongruent conditions for a numerical distance of 2 units, neu
pairs created by using these two digits (i3e3, ands 5) were included in the
analysis as neutral trials for numerical distance 2. Each digit from all three ps
of a given numeric distance was used to create four stimuli. For example, the c
2 was presented in four stimuli: it was included twice in the analysis as a neu
trial for physical distance of 1 mm (e.g-2: one digit of the pair was 6 mm and
the other 7 mm) and twice it was included in the analysis as a neutral trial
physical distance of 2 mm (e.g.2: one digit of the pair was 7 mm and the other
9 mm). In this way the comparison between the congruent, incongruent, and r
tral conditions was made by using the same digits.

Neutral stimuli in the numerical comparisarciuded two digits that were dif-
ferent in numerical value but of the same physical size. In order to keep the fa
rial design we created the neutral stimuli from the digits and physical sizes t
were used for the other two conditions (congruent and incongruent). For exam
the pair 2-3 was used to produce congruent and incongruent stimuli for a num
cal distance of 1 unit. Hence, neutral pairs created by using these two digits (
2 3) were included in the analysis as neutral trials for a physical distance of 1
2 mm. For a physical distance of 1 the two digits (2 3) were presented twice |
6-mm height and twice in a 7-mm height. For a physical distance of 2, the two c
its (2 3) were presented twice in a 7-mm height and twice in a 9-mm heig
Accordingly, the 7-mm stimuli were divided among the two conditions: half c
them were stimuli for a distance of a 1 mm unit and half of them for a distance
a 2-mm unit. In this way the comparison between the congruent, incongruent,
neutral conditions was made using the same physical sizes.

Before every experimental block participants were presented with 36 pract
trials. This block was similar to the experimental block with the following excey
tions: (1) We used different Arabic numerals as stimuli. For numerical distanc
of 1 unit the digits were 3-4 and 5-6, for numerical distances of 2 units the dic
were 4-6 and 5-7, and for numerical distances of 4 units the digits were 1-5 .
5-9. (2) Of the 48 possible congruent trials (2 physical siz&numerical dif-
ferencesx 2 stimuli per numerical distance Xopposite sides of fixatiox 2
presentations) we randomly chose 12 trials. The same was done for the 48 p
ble incongruent and neutral trials.

Design. The variables manipulated were group (beginning of first grade, enc
first grade, third grade, fifth grade, and university students), relevant dimensi
(physical vs numerical), physical distance (distance of 1 mm or 2 mm), nume
cal distance (1, 2, or 4) and congruity (incongruent, neutral, or congruent). Th
we had a5 X2 X 2 X 3 X 3 factorial design. Group was the only between-par
ticipants variable.
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Procedure. The participant’s task was to decide which of two digits in a givi
display was larger. Each participant took part in one session composed of two
ferent blocks. In one block “larger” was defined by physical size and in the oth
it was defined by numerical value. The stimuli in each block were presented i
random order. Half of the participants performed physical comparisons first,
the other half performed numerical comparisons first. Before the experime
began, participants were given a practice block. The participants were aske
respond as quickly as possible but to avoid errors. They indicated their choice:
pressing one of two keys corresponding to the side of the display with the cho
digit.

Each trial began with a fixation point presented for 300 ms. Five hundred i
liseconds after the fixation point was eliminated, a pair of digits appeared &
remained in view until the participant pressed a key (but not for more than 5(
ms). A new stimulus appeared 1500 ms after the participant’s response.

Results

Error rates were generally low (at the beginning of first grade there were 6.
errors, at the end of first grade there were 6.3%, third grade had 2.7% errors,
grade had 3% errors, and university students had 2.5% errors) and therefore
not analyzed. For every participant in each condition the mean RT was calcu
ed (for correct trials only). These means were subjected to a five-way analysi
variance (ANOVA) with group as the only between-subject factor and releve
dimension, physical distance, numerical distance, and congruity as within-sub,
factors.

All five main effects were significant. Speed of processing increased with a
(mean RT for children at the beginning of first grade: 1375 ms; end of first grac
1150 ms; third grade: 875 ms; fifth grade: 773 ms; and university students: ¢
ms) [F(4, 75)= 148, MSE = 424,280,p < .001]. Physical comparisons were
made 257 ms faster than numerical compariséfs, [7/5) = 194.28, MSE =
266,851 p < .001]. Participants responded faster to a large physical distance tt
to a small physical distance (mean RT for physical distance of 1 mm: 960 ms;
for physical distance of 2 mm: 920 m$X1, 75) = 88.3,MSE = 13,201,p <
.001]. Similarly, participants responded faster to large numerical distances tha
small ones (mean RT of numerical distance of 1 unit: 963 ms; 2 units: 940 r
and 4 units: 917 ms) [F(2, 156) 48.5,MSE = 10,159,p < .001]. There was a
significant congruity effect [F(2, 150F 147.1,MSE = 34,751,p < .001] with
mean RTs of 1013, 940, and 867 ms for incongruent, neutral, and congruent p:
respectively.

The interaction between group and relevant dimension was signifieght [
75) = 14.9,MSE = 36,004 ,p < .001]. Physical comparisons were always mad
faster than numerical comparisons, however, in separate comparisons of adje
groups we found that the difference between physical and numerical judgme
decreased as age increased. The difference in time between numerical and |
ical judgments was 128 ms smaller at the end of first grade compared with
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beginning of first grade, 39 ms smaller in third grade compared with end of fi
grade, and 111 ms smaller in fifth grade compared with third gfiede 75) =
19.19,MSE = 13,201,p < .001; F(1, 75) = 8.9, MSE = 13,201,p < .01;
F(1, 75)= 7.05,MSE= 13,201,p < .01, respectively]. No such significant dif-
ference was found between university students and fifth grade students.

The interaction between group, relevant dimension, and congruity was sigr
cant [F(8, 150)= 2.9, MSE= 37,210,p < .01] and is presented in Fig. 1. Since
one of the main interests of this experiment was to study the development of a
matic activation of numbers, we examined the simple interaction effects of ¢
gruity X group for each relevant dimension separately. The interaction betw
congruity and group was significant both when the relevant dimension w
numerical F(8, 150)= 2.3,MSE = 28,727,p < .05] and when it was physical
[F(8,150)= 4.16,MSE= 43,233 p < .001]. Hence, within each relevant dimen-
sion, we computed the simple simple main effects of the congruent variable
the five groups. In the numerical comparison all simple simple main effects wi
significant [beginning of first gradé€(2, 30)= 11.5,MSE= 57,166,p < .001;
end of first gradeF(2, 30) = 20.9,MSE = 50,872,p < .001; third gradeF(2,
30) = 59.2, MSE = 15,364,p < .001; fifth grade:F(2, 30) = 51.9, MSE =
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FIG. 1. The size congruity effecinean reaction time as a function of group (grade), relevan
dimension (task) and congruity. Each graph box belongs to a different age group, whemadz;
B = beginning of school year; E end of school year; and H undergraduate students. Relevant
dimensions are N, indicating numeric, and P, indicating physical.
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16,052,p < .001; and university students(2, 30) = 68.9, MSE = 4,180,p <
.001]. In the physical comparison all simple simple main effects of the congrt
variable were significant except for the simple simple main effect in the bec
ning of first grade [end of first grade(2, 30)= 22.6,MSE= 12,726,p < .001,
third grade:F(2, 30) = 8.5, MSE = 49,501,p < .001; fifth gradeF(2, 30) =
22.8,MSE = 47,425,p < .001 and university students(2, 30)= 26.3,MSE =
26,407 p < .001]. We continued by analyzing the congruity variable within ea
relevant dimension.

Physical comparisons (numerical dimension is irrelevafit) can be seen in
Fig. 1 (right side in each panel), the congruity effect starts to appear only at
end of the first grade [F(1, 75 12.5,MSE = 41,502,p < .001]. At this time
the size congruity effect (incongruent vs congruent) is composed mainly of
interference component (incongruent relative to neuffl), [75)= 5.07, MSE=
58,629,p < .05]. From the end of first grade until the third grade no significa
change in the congruity effect is seen, nonetheless, a facilitatory component (
gruent relative to neutral) appears in the third grade [F(1=75)95, MSE =
29,569 p < .01]. Both facilitation and interference are shown by fifth gr&de, [
75)= 17.86,MSE = 29,569,p < .001 and F(1, 75F 9.48, MSE= 58,629p <
.01, respectively] and by university studeriél], 75)= 3.6, MSE= 29,569p <
.01; and F(1, 75 9.25,MSE = 58,629,p < .01, respectively]. However, the
size congruity effect is larger in the fifth grade (233 ms) compared with the tt
grade (154 ms) [F(1, 65F 3.7, MSE= 41,502,p < .05].

Numerical comparison (physical dimension is irrelevaft)the beginning of
first grade the size congruity effect [F(1, 75)28.6, MSE = 39,385,p < .001]
is composed mainly of a facilitatory component [F(1, #536.4,MSE= 22,485,

p < .001]. From the end of first grade an interference component appears
[size congruity effect at the end of first graéi€l, 75) = 53, MSE = 39,385,p
< .001; inhibitory componenE(1, 75)= 22,MSE= 24,312 p < .001 and facil-
itatory componentE(1, 75)= 23.4,MSE= 22,485,p < .001].

The distance effects indicated by the interaction of relevant dimension
numerical distance [F(2, 156 33.7,MSE= 13,458,p < .001] and is present-
ed in Fig. 2. The numerical distance is significant only in the numerical blc
(when numerical dimension is relevant) [F(1, 75)99.4, MSE = 22,024,p <
.001] but not in the physical block. Group does not modulate this effect. The
tance effect is one indication of automatic activation of a symbolic dimensi
and therefore, may help in tracing the developmental changes in automatic
cessing of Arabic numerals. Thus, though the interaction with group was not
nificant (F < 1), the interaction between numerical distance and relevant dim
sion was tested separately for each group of participants. The distance effec
found to be significant in each one of the five groups: beginning of first gre
[F(2, 30) = 3.44,MSE = 36,868,p < .05], end of first gradeH(2, 30) = 8.15,
MSE= 12,455 p < .001], third grade [F(2, 308 13.3,MSE= 8,473,p < .001],
fifth grade [F(2, 30)= 9.8, MSE = 7,182,p < .001], and university students
[F(2, 30) = 40.4,MSE = 2,310,p < .001].
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Discussion

Let us summarize the main results: (1) Speed of processing increases with
and the difference between RTs in physical and numerical tasks decreases
age. (2) When the physical dimension is relevant, a size congruity effect does
appear at the beginning of first grade. About 7 to 8 months later, numerically iri
evant information interferes with physical judgments. Thus, a size congru
effect starts to appear only at the end of first grade and is interference base
the third grade a facilitatory component appears also. (3) A size congruity eff
is found from the beginning of first grade, when the numerical dimension is r
evant. (4) The numerical distance effect appears regardless of grade.

Size congruity, distance, and automaticity. We found an asymmetry betwe
size congruity and distance effects at the beginning of first grade: There was a
tance effect with no size congruity effect. These results support the two repre:
tations model. As mentioned in the introduction, this model suggests that yol
children, as well as adults, develop two different representatiomsmerical val-
ues. The first representation is an internal number line and is reflected in the
tance effect. This representation can be accessed through an algorithmic proce
an intentional autonomic fashion. First the digits are mapped into quantities or
analogical number line, which is used in turn to compare the digits. This comg
ison is conducted by a look-up process that probes the quantities on the nut
line. Since it is easier to compare quantities that are located far away from
another on this line than quantities that are located closer to one another or
line, there is a distance effect (Dehaene, 1989; Dehaene, Depoux, & Melt
1990). The second representation is composed of instances of Arabic nume
These instances enable one to classify numerals as “large” or “small.” This rej
sentation can be accessed through a memory-based process of instance awal
in an autonomous automatic fashion. The comparative judgement decision dif
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for these two representations. We apply an algorithmic-based process (Dehe
1989; Dehaene, Depoux, & Mehler, 1990) to the number scale and a menmnr
retrieval process (Logan, 1988) to the memory-based representation. There i
ability to access each one of the two representations independently.

At the beginning of first grade, children are perfectly able to make a “large™
“small” classification of quantities and objects, but they have not yet accumula
many instances of comparisons between numerical values of Arabic digits. Hel
their ability to judge which of two Arabic digits is the larger one cannot b
retrieved from memory in a single step (i.e., in an autonomous automatic fashi
(Logan, 1988). Therefore, the irrelevant numerical value had no effect, so that -
congruity did not appear in the physical task at the beginning of first grade. In ¢
trast, during their first 6 years of life, young children develop the algorithm-bas
process, which exploits the internal scale (Gallistel & Gelman, 1992; Sieg|
1986; Sophian, 1998; Sophian, Garyantes, & Chang, 1997; Strauss & Cul
1981; Wynn, 1992, 1995). This algorithm-based process is reflected in the diste
effect (beginning of first grade) (see also Duncan & McFarland, 1980; Huntle
Fenner & Cannon, 2000; Sekular & Mierkiewicz, 1977; Temple & Posner, 199
Xu & Spelke, 2000). It is important to note that the distance effect appears o
when numerical values are relevant and not when they are irrelevant (phys
judgements). This can be explained by Logan’s (1988) assumption that in the |
between memory retrieval and algorithm based processes, the former usually v
However, when the task requires attending to the numerical dimension, part
pants use the algorithmic process to retrieve the required information from
number line. As we suggested earlier, this algorithmic process is done in an in
tional automatic fashion (Tzelgov, Henik, Sneg, & Baruch, 1996) and is reflect
in the distance effect in the numerical comparisons.

Young children are slower to respond than older children. What accounts
this difference? One reason could be that the association of size (physica
numerical) with an arbitrary key-press is much more difficult for younger chi
dren (see Kail, 1991). However, despite these slower responses, there is a bi
difference between the slow numerical processing and the fast physical proc
ing in young children than in older children. Hence, at an early age, the ability
confront a physical dimension is very different from the ability to confront
numerical dimension and it may rely on memory retrieval of instances (assum
that instances of physical comparisons accumulate earlier) (Yonas, Granruc
Pettersen, 1985). As age increases instances of comparisons of numerical v:
of Arabic digits begin to accumulate and therefore are processed much like pf
ical sizes. Considering the fact that physical sizes are automatically proces
from infancy (Yonas, Granrud, & Pettersen, 1985), we argue that as age incre
es, numerical values of Arabic digits are being processed faster and in
autonomous automatic fashion, similar to the processing of physical sizes.

Furthermore, several reports have suggested dissociation between the inte
ence and the facilitatory components of the Stroop effect (Henik, Singh, Beckl
& Rafal, 1993; Lindsay & Jacoby, 1994; Posner, 1978; Tzelgov, Henik, & Berge
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1992). The facilitatory component is supposed to involve processes that are n
automatic since they are less subjected to strategic control (for example,

Tzelgov, Henik, & Berger, 1992). Accordingly, our results show that at the end

first grade, size congruity in the physical task (when the numerical dimension v
irrelevant) was composed of an interference component, and only in third grade
facilitation component appeared also. Hence, the ability to categorized Ara
numerals as “large” or “small” develops with age and becomes automatic at a ir
advanced age. As suggested earlier, the automaticity of classifying digits as “la
vs “small” depends on the accumulation of instances in memory so that such c
sification can be retrieved from memory in a single step (Logan, 1988). Note t
in the numerical task (when the physical dimension was irrelevant), size congrt
was composed only of a facilitation component at the beginning of first grade.
mentioned earlier, physical sizes are automatically processed from a very early
(Yonas, Granrud, & Pettersen, 1985), therefore the facilitation component, whicl
more automatic in nature, appeared earlier than the facilitation component in
physical task (when numerical values were irrelevant).

As seen under Results, the numerical comparisons were significantly slo
than the physical comparisons. It might be argued that there is a memory-be
process from the beginning of first grade in which classification of “large” v
“small” of numerical values is done. In this case access to these representat
might not be completed in time to interfere with the physical comparison. V
believe that our results support the idea that numerical processing at the be
ning of first grade is not yet automatic, at least not for the crude classifications
magnitudes into “large” or “small” (which is memory based). Hasher and Zac
(1979) and Logan (1988) argued that the degree of automaticity is reflected in
speed of processing and correlates with proficiency; as skill develops proces:
becomes faster and might be produced in a single step. Logan (1988) sugge
that the memory-based mechanism develop with practice. Since we found that
speed of processing increases with age, we argue, according to Hasher and z
(1979) and Logan (1988), that in a more advanced age and with school praci
the ability to classify Arabic digits into “large” or “small” becomes autonomou
automatic and those instances can be retrieved from memory in a single stey

Maturation or schoolingOne may argue that the significant improvement ir
number processing in first grade may be due to maturational factors. This ide
consistent with the slow maturation of frontal areas in the brain, which reach f
development only at the age of 7 years old (Diamond, 1992; Thatcher, 1991)
this age, the participants in our experiment were at the end of first grade, wi
size congruity started to appear. The design of our study does not allow us to
arate maturing and schooling effects. However, the argument that changes in «
dren’s numerical knowledge are influenced only by maturation is inconsiste
with two other findings. First, there was a marginally significant difference in tf
size congruity effect between third and fifth grade participants. Mean ages
these groups were 8.8 and 11 years old in the third and fifth grades, respecti
By this time in life, brain areas that are related to size comparisons have reac
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their full development. Temple and Posner (1998), for example, found that
brain area responsible for abstract representation of Arabic numerals and ar
of dots is located in the inferior parietal area of the brain. This area develops
is responsive to humber comparison before 5 years of age and before for
mathematical training. Second, the fact that a distance effect but not a size
gruity effect was found in all ages might imply that schooling improves the ab
ity to access the internal magnitudes, at least to those symbols that indicate |
or small quantities. The subcomponents of skilled performance, which beco
automatic with practice, are supposed to serve the skilled performer by being ¢
cuted effortlessly and faster (Hasher & Zacks, 1979; Shiffrin & Schneider, 197
Accordingly, the degree of skill acquired during learning at school might ha
influenced the speed taken to classify the Arabic digits into a “large” vs “sma
scale. Thus, the distance effect but not the size congruity effect appeared in yc
children who were not highly skilled with the use of Arabic digits.

Moreover, Griffin, Case, and Capodilupo (1995) have shown that children w
lack central numerical concepts did not succeed in formal mathematical instr
tion. After these concepts had been taught these children developed an inte
representation of magnitude and, thus, performed as well as children who
firm numerical concepts. This indicates that numerical knowledge may be inf
enced by schooling and not only by maturing.

The study of Girelli et al. (2000Dur results are similar to the results found in
the experiments of Girelli, Lucangeli, and Butterworth (2000) (see al:
Butterworth, 1999). Both studies found a size congruity effect in the earliest ¢
group, that is, beginning of first grade in our experiment and 4-year-old childr
in Butterworth’s (1999) experiment in the numerical task (when the physic
dimension was irrelevant). However, Girelli, Lucangeli, and Butterworth (200(
did not find a size congruity effect in the first grade group in the physical ta
(when the numerical dimension was irrelevant). Since we divided the first gre
children into two groups, that is, beginning and end of first grade, we were able
find that a size congruity effect starts to appear at the end of first grade, earlier |
argued by Girelli, Lucangeli, and Butterworth. In addition, in contrast with Girell
Lucangeli, and Butterworth, we used three different numerical distances, that
numerical distances of 1, 2, or 4. The use of three numerical distances enable:
to examine the idea that distance has a monotonic relationship with respond
Had we used only two distances we would not have been able to rule out non
notonic relations. Hence, using three numerical distances enabled us to s
developmental changes in the distance effect rather than only the laterality eff

It should be noted that Girelli, Lucangeli, and Butterworth (2000) examine
the effect of laterality by comparing bilateral pairs (i.e., one digit was smaller a
the other larger than 5) and unilateral pairs (i.e., both digits either smaller or I
er than 5). For the bilateral stimuli they employed pairs with distance 5 (e.g., 1
while for the unilateral stimuli they employed pairs with distance 1 (e.g., 1 -
Thus, it is possible to examine effects of distance by comparing these two col
tions. The authors did report a significant effect of laterality (i.e., RTs to bilate
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al pairs were shorter than RTs to unilateral pairs) in numerical compariso
regardless of age. However, this arrangement confounds laterality and dista
so the fact that bilateral pairs were responded to faster than unilateral pairs |
be due either to the influence of laterality or to the distance effect. Our des
included three numerical distances: 1 and 2 for unilateral pairs (6-7, 4-5, and
and 6-8, 3-5, and 2-4) and 4 for bilateral pairs (4-8, 3-7, and 2-6). In order
examine effects of distance that are not confounded by laterality, we compa
only unilateral pairs with distances 1 and 2. The results of these analyses sur
the conclusions presented previously. Examination of the numerical task shou
a significant distance effect regardless of grobfl[ 75) = 10.21, MSE =
12,164.8,p < .05]. Despite the lack of interaction with group we compare
responses to these two distances in the youngest group of participants (i.e., b
ning of first grade). Within this group RTs to distance 1 (1603 ms) were signi
cantly slower than RTs to distance 2 (1570 ms) [F(1,7%)2, MSE= 17,839,

p < .05]. This suggests that at the beginning of first grade children do show
distance effect, independent of any laterality effect.

CONCLUSIONS

To summarize, we presented a model of internal representation of numk
according to which there are two different internal representations of magnitt
(the number scale and the instance of pairs of digits) which are retrieved by
ferent processes.

We can conclude by saying that our results help understand the developme
automatic processing of numerical information. The ability to understand a
automatically process the quantitative values of Arabic numerals may play
important role in the acquisition and implementation of skilled calculatio
(Griffin, Case, & Capodilupo, 1995). Understanding the development of the
abilities may have profound implications for theories of education and chi
development in the field of number processing.
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