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Are different magnitudes, such as Arabic numerals, length and area, processed by the same system? Answering
this question can shed light on the building blocks of our mathematical abilities. A shared representation theory
suggested that discriminability of allmagnitudes complieswithWeber's law. The currentwork examined this sug-
gestion. We employed comparative judgment tasks to investigate different types of comparisons — conceptual
comparison of numbers, physical comparison of numbers and physical comparison of different shapes. We used
8 different size ratios and plotted reaction time as a function of these ratios. Our findings suggest that the relation-
ship betweendiscriminability and size ratio is not always linear, as previously suggested; rather, it ismodulated by
the type of comparison and the type of stimuli. Hence, we suggest that the representation of magnitude is not as
rigid as previously suggested; it changes as a function of task demands and familiarity with the compared stimuli.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

What is the relationship between the ability to distinguish between
two numbers and the distance between them? This question attracted
much attention in the literature of numerical cognition. Many suggested
that this relationship obeys Weber's law and that numerical values are
compared similarly to other dimensions (e.g., size). The current study
examines these issues, reports deviations fromWeber's law and suggests
that different dimensions give rise to different comparative functions.

Moyer and Landauer (1967) asked adult participants to compare
two Arabic numerals (to choose the numerically larger number). The
authors plotted reaction time (RT) as a function of the numerical
distance between the to-be-compared numbers and reported that the
best fit to describe their data was the equation RT = K * log (larger/
larger-smaller) (i.e., the Welford function), which accounted for 75%
of the variance. Accordingly, the authors suggested that comparisons
of numbers are made “… in much the same way that comparisons are
made between physical stimuli such as loudness and length of lines”
(p. 1520). The same methodology (i.e., comparative judgments, and
plotting RT as a function of the distance or ratio between the compared
stimuli) was employed by others and led to the conclusion that the
pattern of results was compatible with Weber's law.
ces, Ben-Gurion University of
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Weber's law states that ΔI/I = K. That is, the amount necessary to
detect a difference between two stimuli (e.g., ΔI) depends on the initial
intensity of the stimulus (e.g., I). The ratio of the just noticeable differ-
ence (JND) to intensity is constant (e.g., K). To examine changes in the
ability to discriminate between magnitudes, researchers use compara-
tive judgment tasks and examine changes in performance — accuracy
and speed of responding (RT) — as a function of the ratio between
two magnitudes. The underlying assumption is that RT measures the
ability to discriminate between two magnitudes. As such, RT should in-
crease with increase in stimuli ratio because increase in stimuli ratio
means increase in the similarity between the to-be-compared stimuli
or difficulty to discriminate between them. When RT as a function of
ratio was linear it was taken as an indication for compatibility with
Weber's law. For example, comparisons of the conceptual size of pic-
tures of objects (Paivio, 1975), words representing different animals
(Moyer, 1973), and comparisons of dot arrays bymonkeys and humans
(Brannon, 2006). Note that all these studies used RT and discussed
Weber's law. Hence, in the numerical cognition literature, RT is an
acceptable measure of discriminability; Moyer (1973) cites Johnson's
(1939) results revealing Weber's law performance in the comparison
of two line lengths and using RT as the dependent measure, and
Verguts, Fias, and Stevens (2005) cite a work by Festinger (1943) that
discusses Weber's law in the context of RT experiments.

On the basis of this common ground, Cantlon, Platt, and Brannon
(2009) suggested that all magnitudes are processed by the approximate
number system (ANS), the hallmark of which is Weber's law. This
shared representation and the compliance with Weber's law are highly
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Table 1
Pairs of stimuli by numerical ratio.

Category ratio Ratio Large number Small number

0.1 0.11 9 1
0.13 8 1
0.14 7 1

0.2 0.2 5 1
0.22 9 2
0.25 4 1
0.25 8 2

0.3 0.33 3 1
0.33 6 2
0.33 9 3

0.4 0.4 5 2
0.43 7 3
0.44 9 4

0.5 0.5 2 1
0.5 4 2
0.5 6 3
0.5 8 4

0.6 0.6 5 3
0.63 8 5
0.67 3 2
0.67 6 4
0.67 9 6

0.7 0.71 7 5
0.75 4 3
0.75 8 6

0.8 0.8 5 4
0.83 6 5
0.86 7 6

Note. Ratio = (small number/large number) with an accuracy of 2 decimal places.
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acceptable principles in the numerical cognition literature and a large
number of studies use these assumptions as their point of departure
(Beran, Decker, Schwartz, & Schultz, 2011; Buhusi & Cordes, 2011;
Droit-Volet, 2010; Möhring, Libertus, & Bertin, 2012; Piazza, 2010;
Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004; Piazza et al., 2010;
Tokita & Ishiguchi, 2011; Walsh, 2003).

However, this line of evidence has several shortcomings. First, some
studies reported the distance effect, but examined only 2–3 different
distances (Cohen Kadosh, Henik, & Rubinsten, 2008; Rubinsten &
Henik, 2002; Vigliocco, Vinson, Damian, & Levelt, 2002). Under those
conditions it is hard to find subtle differences between different magni-
tudes. Second, in many studies (e.g., Cantlon & Brannon, 2006; Cohen
Kadosh et al., 2005; Fias, Lammertyn, Reynvoet, Dupont, & Orban,
2003; Piazza, 2010) the existence of the distance effect is taken as evi-
dence for compliance withWeber's law. This is an inaccurate statement
because Weber's law suggests not only that the discriminability
depends on the ratio between the to-be-compared magnitudes, but
also that this dependency is linear. In studies that tried to fit their data
to a linear trend, the value of the fit to Weber's law was around 75–
79% (Moyer, 1973; Moyer & Landauer, 1967 — fit to the Welford
function; Paivio, 1969), while the fit to Weber's law in comparative
judgment of line length was 99% (Moyer, 1973, citing Johnson, 1939).
In all of those studies there are no reports of attempting to fit the results
to functions other than linear. Thus, deviation from Weber's law is
possible. The third shortcoming lies in the fact that most studies in the
numerical cognition literature focused on comparative judgments of
two numerosites or the conceptual size of symbolic stimuli, and com-
pared their results to findings regarding physical sizes such as loudness,
brightness, etc., found in estimation tasks. Given that different magni-
tudes were studied using different methodologies, it is problematic to
suggest, for example, that comparisons of numbers are made similarly
to comparisons between physical stimuli (Moyer & Landauer, 1967,
p. 1520; see also Brannon, 2006, for a very similar suggestion).

The current study employed the same method — comparative
judgments — with the aim to more accurately describe participants'
performance while comparing different stimuli. Specifically, partici-
pants were asked to decide which of two stimuli was physically or
conceptually larger. The stimuli were single-digit numbers that
were compared according to their numerical value (conceptual compar-
ison, e.g., 2 7), or their physical size (physical comparison, e.g., 2 2), or the
stimuli were two identical punctuationmarks (e.g., #, @, &, etc.) or iden-
tical Gibson figures (Gibson, Gibson, Pick, & Osser, 1962)—meaningless
shapes that have the same visual complexity as numbers — that were
compared according to their physical size. Every participant performed
only one condition.

In line with studies mentioned above, we expected performance to
complywithWeber's law. Namely, we expected that a constant increase
in ratio between two numberswould result in a constant increase in RT.
For example, if RT to the pair 2 4 (ratio of 0.5) is 300 ms, and RT to the
pair 5 3 (ratio of 0.6) is 350 ms, then RT to the pair 7 5 (ratio of 0.7) is
predictable— 400 ms— since for every 10% increment in the numerical
ratio, RT increases by 50 ms (a constant). Hence, in the current studywe
plotted RT as a function of magnitude ratio and fitted it to the function
RT = axb + c, where RT is a measure for discriminability, x is the
ratio between the magnitudes (smaller divided by larger) and c is the
minimal RT. If the relationship between RT and magnitude ratio is line-
ar, as suggested by previous studies (e.g., Cantlon et al., 2009), and re-
ferred to as Weber's law, the exponent b should be 1. Exponent values
other than 1 would indicate deviation from Weber's law. Larger expo-
nents mean that the change in RT is not constant and cannot be predict-
ed by a linear function. Plotting RT as a function of magnitude ratio
(smaller/larger) has been done in several works. For example, Cantlon
and Brannon (2006) had participants compare numerosity of dots (se-
lect the array with less dots) and plotted RT as a function of numerosity
ratio. They concluded from that linear relationship that their pattern
suggested Weber's law.
By finding the exponent (b) for each participant and using its value
as a dependent variable, we were able to more thoroughly investigate
whether type of stimuli (symbolic or non-symbolic) and type of com-
parison (physical or conceptual) modulated performance in a compara-
tive judgment task.

The expected results according to the current literature are: (1) there
would be no significant difference among exponents of different
types of stimuli and comparisons, and (2) these exponents would
not be significantly different from 1, suggesting a linear trend and
compliance with Weber's law. However, if performance in compara-
tive judgment tasks is modulated by the type of comparison and type
of stimuli, we expect the exponents to be different from each other.

2. Experiment 1: conceptual comparison of Arabic numerals

2.1. Method

2.1.1. Participants
Fourteen volunteers (10 females, 4 males), first year students at

Ben-Gurion University of the Negev, participated in the experiment
for class credit. All participants were native Hebrew speakers and had
intact or corrected vision.

2.1.2. Stimuli
Arabic numerals in black Ariel font were presented on a white back-

ground, in the same physical size. We manipulated the numerical ratio
between the two numbers from 0.1 to 0.8. For example, the ratio of
0.5 was composed of the pairs (2 4), (3 6), etc. For every ratio, we
used all the possible pairs (see Table 1). There were 6 pairs of numbers
for every ratio. If the number of possible pairs per ratiowas smaller than
6, some of the pairs were usedmore than once. Overall, across all ratios,
all the numbers appeared a similar number of times.

2.1.3. Procedure
Participants were asked to decide, as quickly as possible while

avoiding errors, which of the two Arabic numerals was numerically



310 T. Leibovich et al. / Acta Psychologica 144 (2013) 308–315
larger. They were asked to indicate their decision by pressing a key cor-
responding to the side of the larger number (q key on the left or p key on
the right). Each trial began with a central fixation point presented for
300 ms. Five hundred milliseconds after the elimination of the fixation
point, a pair of numerals appeared and remained in view until the par-
ticipant pressed a key. The next trial started 500 ms after response onset
(see Fig. 1A). A block of 18 practice trials was presented first, followed
by three experimental blocks of 96 trials each (8 ratios × 6 pairs × 2
sides (larger number on the left vs. on the right)). The stimuli within
the blocks appeared in a random order. The dependent measures
were RT and error rates.
2.2. Results

For every participant we computed mean RT for the correct re-
sponses, and accuracy. RTs and accuracy were subjected to a one-way
ANOVA (analysis of variance) with ratio as the dependent variable.
The main effect of size ratio was significant, F (7, 91) = 36.51,
MSE = 462, p b .001, η2p = .74; namely, RT increased with ratio. A
similar analysis of error rates revealed that accuracy decreased with
an increase in size ratio, F (7, 91) = 8.27, MSE = .0006, p b .001,
η2p = .39. As can be seen in Fig. 1B, plotting RT as a function of concep-
tual size ratio and fitting the graph to the function RT = axb + c yields
a power function trend (b-value = 1.71, r2 = .97).

Because RT was plotted as a function of ratio for every participant
and fitted to a power function, each participant had an exponent
value (b) for a given condition (e.g., conceptual comparisons). These
b-values were subjected to a t-test to examine deviations from 1. One
sample t-test revealed the exponent values were significantly different
from 1, t (13) = 3.45, p b .005. A non-parametric sign test confirmed
the significant difference, z (14) = 3.47 p b .001. As mentioned in the
introduction, many researchers suggested that the relationship be-
tween RT and the ratio between magnitudes best fits a linear function.
A way to examine this issue is to compare the variance generated by
the two functions (i.e., linear function vs. power function). To investi-
gate this, we fitted the results of every participant once to a linear func-
tion and once to a power function, and extracted the r2 value. On
average, the linear function explained only 79% of the variance in the
data, whereas power functions accounted for 97% of the variance
(Fig. 1C). This difference was found to be significant in a t-test for
dependent samples, t (13) = 3.6, p b .001, η2p = .5, and in a non-
parametric sign-test, Z = 3.47, p b .001, strengthening the suggestion
regarding deviation from Weber's law. Note that the explained vari-
ance of the linear trend found here (0.79) is very close to the r2

values reported by Moyer and Landauer (1967) and Moyer (1973)
(0.75 and 0.793, respectively).
A B

Fig. 1.Comparative judgments of conceptual comparisons of Arabic numerals. A) Procedure. Par
the conceptual ratio. This plot was fitted to a power function. C) Fit comparisons. The same RTsw
trend. r2 values were significantly higher for the power function trend.
The plots of Experiment 1 were fitted once to a power function and
once to a linear function. Although the plot better fitted a power func-
tion, fitting the plot to a linear function replicated former suggestions
that numbers are compared similar to other physical continua. If
this is indeed the case, we expect a similar trend when comparing the
physical size of two identical numbers or shapes. Accordingly, in
Experiments 2 and 3, participants compared the physical size of two
identical numbers or Gibson figures, and the plots were fitted to a
power function. The exponents of the functions were then compared
to those of Experiment 1.

3. Experiments 2 and 3: physical comparisons of symbolic and
non-symbolic stimuli

3.1. Method

3.1.1. Participants
Fourteen participants (5 males, 9 females) compared the physical

size of symbolic stimuli (Arabic numerals), and fourteen (9 males, 5
females) compared the physical size of non-symbolic stimuli (Gibson
figures). We used the same selection criteria as in Experiment 1, using
students who had not participated in the previous experiments.

3.1.2. Stimuli
For the physical comparisons of symbolic stimuli, we used the

numerals 1–9. In every trial, the same number appeared in different
physical sizes (e.g., 2 2) — see examples in Figs. 2A and 3A. For the
non-symbolic stimuli, we used 9 different Gibson figures (Gibson
et al., 1962). These stimuli have only one dimensions — physical size.
Each image (Arabic numeral or Gibson figure)was presented in 9 differ-
ent physical sizes (heights of 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 and 4.5 cm) to
create 8 different size ratios, from 0.1 to 0.8. For example, to create the
physical ratio of 0.5 we used the sizes (0.5 cm, 1 cm), (2 cm, 4 cm),
etc. There were 6 pairs of physical sizes for every ratio. If the number
of possible pairs per ratio was smaller than 6, some of the pairs were
usedmore thanonce (see Table 2). Overall, across all ratios, all the phys-
ical sizes appeared a similar number of times.

3.1.3. Procedure
The procedurewas similar to that of Experiment 1. Participantswere

asked to decide, as quickly as possible while avoiding errors, which
stimulus was physically larger. A block of 18 practice trials was
presented first, followed by three experimental blocks of 96 trials each
[8 ratios × 6 pairs of different sized stimuli × 2 sides (larger image on
the left vs. on the right)]. The stimuli within the block appeared in a ran-
dom order. The dependent measures were RT and error rates.
*
C

ticipants indicated the conceptually larger numeral by pressing a key. B) RT as a function of
ere fitted once to a linear trend (similar to previous studies) and once to a power function
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Fig. 2. Comparative judgments of physical size of numbers. A) Procedure. Participants indicated the physically larger numeral by pressing a key. B) RT as a function of the physical ratio of
the numerals. This plot was fitted to a power function.
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3.2. Results

For every participant we computed mean RT for the correct re-
sponses, and accuracy. RTs and accuracy were subjected to a one-way
ANOVA with ratio as the dependent variable. RT analyses revealed sig-
nificant main effects of size ratio, F (7, 91) = 25.6, MSE = 441,
p b .001, η2p = .66, and F (7, 91) = 30.63, MSE = 620, p b .001,
η2p = .7, for symbolic (numbers) and non-symbolic (Gibson figures)
stimuli, respectively, suggesting that RT increased with an increase in
size ratio. A similar analysis of error rates revealed that accuracy
decreased with an increase in size ratio, F (7, 91) = 5.17,MSE = .0008,
p b .001, η2p = .28 and F (7, 91) = 7.48, MSE = .0008, p b .001,
η2p = .37, for symbolic and non-symbolic stimuli, respectively. Similar
to Experiment 1, we computed b-values for each participant in each con-
dition. As can be seen in Figs. 2B and 3B, plotting RT as a function of ratio
yields power function trends; for symbolic comparisons b = 2.87, r2 =
.97 and for non-symbolic comparisons b = 5.38, r2 = .96. One sample
t-tests revealed that the exponent values were significantly different
from 1, t (13) = 4.01, p b .005 and t (13) = 7.45, p b .001, for symbolic
and non-symbolic comparisons, respectively.

4. Experiment 4: physical comparison of punctuation marks

Gibson figures were chosen as non-symbolic stimuli, due to their
visual similarity to numbers and their lack of conceptual size. How-
ever, there is one important difference between numbers and Gibson
figures — numbers are very familiar shapes whereas Gibson figures
are novel and unfamiliar stimuli. Therefore, it is possible that the
large exponent of the power function for Gibson figures was due to
the lack of familiarity. To examine this possibility, another group of
R
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*
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A B

Fig. 3. Comparative judgments of physical size of Gibson figures. A) Procedure. Participants ind
(physical) size of the figures. This plot was fitted to a power function.
participants compared the physical sizes of two identical punctua-
tionmarks (e.g., !, @, *, ?). Those shapes are very familiar, are visually
similar to numbers, but have no conceptual size. We repeated the
procedure of Experiment 3, but instead of nine Gibson figures, we
used nine punctuation marks.

4.1. Method

4.1.1. Participants
Fourteen participants (4 males, 10 females) compared the physical

size of punctuation marks. We used the same selection criteria as in
Experiment 3, using students who had not participated in the previous
experiments.

4.1.2. Stimuli
The stimuli were nine punctuation marks: !, @, #, $, %, ^, &, * and ?.

The stimuli were presented as described in Experiment 3.

4.1.3. Procedure
We used the same procedure as in Experiment 3, with two changes.

First, the fixation point was a cross (+) instead of an asterisk (*)
(Fig. 4A), since an asterisk was one of the stimuli. Second, at the end
of the task, participants were asked if the stimuli reminded them of
numbers. None of the participants connected a specific punctuation
mark to a number.

4.2. Results

For every participant we computed mean RT for the correct re-
sponses, and accuracy. RTs and accuracy were subjected to a one-way
Physical ratio

RT= axb+c
b= 5.38
r2= .96

.2
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390

430

470
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.4 .6 .8

icated the physically larger image by pressing a key. B) RT as a function of the perceptual



Table 2
Pairs of stimuli by physical ratio.

Category ratio Ratio Large number Small number

0.1 0.11 4.5 0.5
0.13 4 0.5
0.14 3.5 0.5

0.2 0.2 2.5 0.5
0.22 4.5 1
0.25 2 0.5
0.25 4 1

0.3 0.33 1.5 0.5
0.33 3 1
0.33 4.5 1.5

0.4 0.4 2.5 1
0.43 3.5 1.5
0.44 4.5 2

0.5 0.5 1 0.5
0.5 2 1
0.5 3 1.5
0.5 4 2

0.6 0.6 2.5 1.5
0.63 4 2.5
0.67 1.5 1
0.67 3 2
0.67 4.5 3

0.7 0.71 3.5 2.5
0.75 2 1.5
0.75 4 3

0.8 0.8 2.5 2
0.83 3 2.5
0.86 3.5 3

Note. Ratio = (small size/large size) with an accuracy of 2 decimal places.
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ANOVA with ratio as the dependent variable. RT analyses revealed sig-
nificant main effects of size ratio, F (7, 91) = 68.47, MSE = 223,
p b .001, η2p = .84, suggesting that RT increased with an increase in
size ratio. A similar analysis of error rates revealed that accuracy
decreased with an increase in size ratio, F (7, 91) = 11.69, MSE =
.0003, p b .001, η2p = .47. Similar to Experiment 1, we computed
b-values for each participant in each condition. As can be seen in
Fig. 4B, plotting RT as a function of ratio yields a power function
trend; b = 3.26, r2 = .97.

5. Comparisons across experiments

5.1. Reaction time and accuracy rates analyses

In order to investigate whether the pattern of results differs among
the four experimental conditions, we performed a two-way ANOVA
with condition (numbers— conceptual comparison, numbers— physical
comparison, punctuation marks, and Gibson figures) as an independent
@ @

+ 300 ms

500 ms

Until
response

Time

A

Fig. 4. Comparative judgments of the physical size of punctuation marks. A) Procedure. Partic
perceptual (physical) size of the figures. This plot was fitted to a power function.
between-subjects variable, ratio (0.1–0.8) as an independent within-
subjects variable and RT as a dependent variable. This analysis revealed
a significant main effect of ratio, F (7, 364) = 136.17, MSE = 364,
p b .001, η2p = .72; namely, RT increased with an increase in size
ratio. There was also a marginally significant main effect for condition,
F (3, 52) = 2.57, MSE = 52, p = .07, η2p = .12. The interaction be-
tween ratio and task was significant, F (21, 364) = 2.28, MSE = 996,
p b .001, η2p = .12. Further analyses of this interaction suggested that
RTs for conceptual comparisons of numbers were significantly slower
than for physical comparisons; F (3, 50) = 281034, Wilks value =
.00059, p b .001. A similar analysis without the conceptual comparison
condition revealed a main effect of ratio, F (7, 273) = 103.5, MSE =
428, p b .001, η2p = .73, but no main effect for task, F (2, 39) b 1, ns,
η2p = .04). Thus, only the RT of the conceptual comparison task was
significantly different, and the RTs for all the other comparison tasks
were similar.

A similar analysis (i.e., all 4 conditions with ratio as an independent
variable) was conducted with accuracy rates as a dependent variable.
This analysis revealed only a main effect for ratio, F (7, 273) = 103.4,
MSE = 428, p b .001, η2p = .73. Therefore accuracy rates were not
modulated by the different conditions. Average values of RT and accuracy
can be seen in Table 3.

5.2. Trend analysis

Exponent (i.e., b) values for the various conditions were subjected to
a one-way ANOVA with condition as an independent between-subjects
variable and exponent value as a dependent factor. Exponents were
modulated by experimental conditions, F (3, 52) = 10.66, MSE = 2.39,
p b .001, η2p = .38. Exponent values for conceptual comparisons of
numberswere significantly lower than for physical comparisons of num-
bers, F (1, 39) = 4.25,MSE = 2.9, p b .005. Exponent values for physical
comparisons of numberswere significantly lower than for physical com-
parisons of Gibson figures, F (1, 39) = 9.31,MSE = 2.9, p b .005. How-
ever, b-values for physical comparisons of numbers did not differ from
those of physical comparisons of punctuation marks, F b 1, ns. The re-
sults are summarized in Fig. 5.

6. General discussion

Examination of changes in RT as a function of magnitude ratio re-
vealed that the type of comparison modulated the exponent. Specif-
ically, physical comparisons of non-symbolic figures (e.g., Gibson
figures) produced the largest exponents, physical comparisons of
numbers and punctuation marks produced smaller exponents and
both were greater than exponents produced by comparisons of
numerical values.
RT = axb+c
b = 3.26 
R2 = .96
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Table 3
Average reaction times and accuracy rates in experiment 4.

Task Accuracy (%) Reaction times (ms)

Conceptual comparison of numbers 98 450
Physical comparison of numbers 96 371
Physical comparison of punctuation marks 99 404
Physical comparison of Gibson figures 98 405

Note. ms = milliseconds.
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In comparative judgment tasks like those introduced here, partici-
pants are asked to indicate the larger of two stimuli as fast as possible.
RT serves as an acceptable indirect measure of discriminability; the
harder it is to discriminate, the longer the RT (Cantlon & Brannon,
2006; Cantlon et al., 2009; Feigenson, Dehaene, & Spelke, 2004). The
ANS theory suggests that all magnitudes are compared using a common
algorithmand complywithWeber's law. Thus, according to the ANS,we
would expect a linear trend to be the best fit for all stimuli and tasks.
Fitting the plot to a power function allows us to detect possible devia-
tions from linearity and provides us with the opportunity to reveal dif-
ferent levels of discriminability. According to the numerical cognition
literature, the change in our ability to discriminate differentmagnitudes
increases linearly (or monotonically) with the ratio of the compared
property (e.g., Brannon, 2006; Cantlon et al., 2009; Feigenson et al.,
2004; Moyer, 1973; Piazza, 2010), obeying Weber's law. This means
that for a fixed size ratio increment of X, RT will increase in a constant
amount. Thus, the difference between responses to ratios 0.2 and 0.3
is identical to the difference between responses to ratios 0.7 and 0.8;
namely, discriminability increases monotonically. We found that the
exponent (i.e., b) of the power function (Y = axb + c) was greater
than 1, suggesting that RT does not change by a constant amount, violat-
ing Weber's law. Rather, RT increase for a fixed increment in size ratio
growswith the similarity between the stimuli (although not monoton-
ically; e.g., RT increment from ratio 0.2 to 0.3 is much smaller than the
increment from ratio 0.7 to 0.8, see Fig. 3B). This implies that discrimi-
nability becomesmore difficult with increase in similarity. Do these dif-
ferent trends mean that magnitudes are not represented by the same
algorithm? Not necessarily. The differences in performances can result
from interactions with systems outside the ANS. Different tasks require
different resources of attention, memory and language, or even low-
level processes. These different requirements can interact with the
ANS and influence different tasks in different ways. This, however,
does not contradict shared representation. For example, Anobile,
Cicchini, and Burr (2011) found that under attentionally-demanding
conditions, an otherwise linear mapping becomes compressed and
nonlinear. In a number-line bisection task, Ashkenazi and Henik
(2010) found that participants with developmental dyscalculia (DD)
presented a compressed representation of the mental number line
(MNL). The authors attributed this representation to a deficit either in
spatial attention or in the orienting network. Formal schooling was
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also found to modulate the representation of the MNL. Siegler and
Opfer (2003) demonstrated that the representation of the MNL is com-
pressed in childhood and becomes linear with age. Cross-cultural stud-
ies attributed this change in representation to formal education (Pica,
Lemer, Izard, & Dehaene, 2004).

There is a debate in the literature whether the ratio dependency
performance usually found in a comparative judgment task is due to
the nature of the task, or it reflects the organization of the MNL.
Verguts et al. (2005) suggested that representation of small numbers
is linear (as demonstrated by the performance pattern in a priming
task, for example). However, in a comparative judgment task perfor-
mance will still comply with Weber's law due to noise. The current
study employed only comparison tasks. Our results might represent
the organization of the MNL or its noise. Nonetheless, the fact that
different stimuli produced different “noise” levels (expressed as differ-
ent exponents) is important since it reveals different factors that are
involved with comparative judgments of magnitudes.

In the current work, two factors were found to modulate the expo-
nent. The first was the type of comparison: exponents were smaller
for conceptual comparisons than for physical comparisons. The second
was familiarity; in physical comparisons, the exponents were smaller
for familiar stimuli (numbers and punctuationmarks) than for unfamil-
iar stimuli (Gibson figures). We will now discuss each factor separately.

6.1. Conceptual vs. physical comparisons

RTs in the conceptual task were longer than in the physical tasks.
However, the accuracy rates were equally high in all tasks (see
Table 3). Thus, the longer RT could be attributed to the process of
retrieval of the symbolic meaning of the stimuli from long-termmemo-
ry before they could be compared, and not to the difficulty of the task.
The exponent in the conceptual comparison task was the smallest;
namely, the increment in the difficulty of discrimination was the
smallest (an exponent close to 1means veryminimal increment beyond
the fixed increment), suggesting that it is easier to discriminate the
conceptual size of numbers (in comparison to discrimination of physical
size). These results are in line with previous findings in the literature
(as mentioned earlier, fitting the results to linear trends yields similar
fits to previous works). However, our interpretation is more cautious;
we suggest a “Weber-like” trend due to the relatively low fit to a linear
trend, and the significant improvement when fitting the plots to a
power function.

This “Weber-like” trend, in contrast to the trend of physical compar-
isons, has several possible explanations. First, some claim that process-
ing of numericalmagnitudes is different from any other comparison. For
example, it has been shown in several studies that the horizontal
intraparietal sulcus (HIPS) is more active during comparisons of num-
bers than during any other comparisons (for a review see Dehaene,
Piazza, Pinel, & Cohen, 2003). Thus, the fact that numerical comparisons
might be processed by a designated system (see alsoMussolin,Mejias, &
Noël, 2010) may be the reason for the Weber-like trend.

Second, in Western culture, we are highly trained in comparisons of
numerical values as we need to compare the exact difference between
numbers — whether in math classes, e.g., a math problem in the class-
room, or in the real world, e.g., the amount of money to pay in the
store. On the other hand, we are also constantly evaluating physical
sizes (e.g., the distance between two cars, etc.). However, in contrast
to the conceptual comparison of numbers, physical comparisons are
much more approximate. Numbers, unlike physical sizes, have verbal
labels. Those verbal labels might be responsible for the linear trend of
conceptual comparisons. A suggestion regarding the importance of
verbal labels comes from a cross-cultural work by Pica et al. (2004).
This study compared performance in a numerosity mapping task of
Western adults with adults from a culture without formal education
in mathematics and little or no number words in their lexicon (the
Munduruku tribe). Participants were asked to place quantities of dots
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on a line. The authors found that while Western adults mapped
numerosities linearly, adults from the Munduruku tribe mapped
numerosities logarithmically, namely, small numbers (that have verbal
labels) were widely spaced whereas larger numbers (that do not have
verbal labels) were almost at the same location on the line, suggesting
problems discriminating them.

Third, it is possible that the ‘mental number line’ that is postulated
to follow Weber's law, is not rigid but flexible and changes with task
demands. Izard and Dehaene (2008) suggested that themental number
line can be “stretched” or “compressed”. When no verbal label is given,
participants use a compressed number line. This can explain the
elevated RTs in the large ratios in the physical comparison tasks. In
contrast, when provided with verbal labels that describe specific
quantities, participants transformed the spontaneous number line
into a “stretched” number line, making responding more accurate.
When comparing the conceptual size of two numbers, the difference
has a verbal label. For example, the difference between 6 and 4 has a
verbal label—2—but the difference between 2 and 2, or @ and @, does
not.

In sum, we suggest to broaden the term “mental number line” to
“mental magnitude line” (MML) as was suggested previously (e.g.,
Holmes & Lourenco, 2011). The MML exists for all magnitudes and
might deviate from Weber's law in comparison tasks for some magni-
tudes. The differences in translation from a given dimension to the
MML and differences in noise affect discriminability. In other words,
the same systemmight be flexible enough to represent differentmagni-
tudes in differentways (i.e., linear or deviations from it). Symbolic num-
bers are a special case since we are trained to represent them verbally
and with high accuracy. The different exponent values in the current
study, combined with the results of previous works (Izard & Dehaene,
2008; Pica et al., 2004; Siegler & Opfer, 2003), suggests that the natural
representation of magnitudes is more noisy (deviates from Weber's
law), and the representation of numbers depends on cultural and
educational factors such as familiarity with the concept of numbers,
the frequency of the number, etc.; thus, it is linear for small numbers
and compressed for large and less frequent numbers (Anobile et al.,
2011; Verguts et al., 2005). Note, however, that the concept of
frequency holds for symbolic numbers but not for physical sizes.
Because different physical sizes are all around us and we need to
make size comparisons every day starting at a very early age, it is
hard to evaluate frequency of one physical size in comparison to
another. This is why we discuss the term “familiarity” and not
“frequency”.

6.2. Familiarity

Unlike Gibson figures, whichwere novel stimuli for our participants,
numbers are highly familiar stimuli that carry a conceptual size. Thus,
the differences in the exponent between physical comparisons of
Gibson figures and numbers can stem from the difference in familiarity
or the lack of existence of conceptual size. To distinguish between these
two options, we conducted Experiment 4 with punctuation marks —
familiar shapes with no conceptual size. The exponent of physical
comparisons of punctuation marks was not significantly different
from that of physical comparisons of numbers. Hence, we concluded
that the familiarity, and not concept of size, affected the exponent.
More research is needed to understand through which mechanism
familiarity affects performance in a comparative judgment task.

6.3. Implications

Although RT and accuracy rates did not differ for the various
physical comparisons, the exponents were different. Accordingly,
we suggest that the trend of RT as a function of ratio is a more sensi-
tive measure of performance than the average RT. Accuracy rates are
similarly being used to extract a Weber fraction value (Halberda,
Mazzocco, & Feigenson, 2008).

Different exponents can also suggest that thementalmagnitude line
is more flexible than assumed before. Even factors that do not relate to
themeaning of a number – such as the familiarity of its physical shape –
canmake it easier or harder to discriminate its physical size. This finding
has some interesting implications, especially for developmental studies.
It looks like early in life, the ability to discriminate magnitudes does not
depend only on the differences between sizes, but on the familiarity
with the to-be-compared objects also. Later in life, and with formal
education in mathematics, the ability to discriminate is affected by
verbal labels.

6.4. Limitations

Our results are currently confined to the visual modality. Additional
experiments are needed in order to extend our conclusions to other
modalities.

The symbolic stimuli compared here were one-digit numbers. The
representation of these numbers is highly automatic. Furthermore,
culturally, we are highly trainedwith exact representation and compar-
ison of numbers fromanearly age in our everyday lives (e.g.,math prob-
lems in school, paying in the store, etc). This is not the case for all size
representations. While we are able to tell if a cat is larger than a
mouse, we are not trained in accurately representing that difference.
This can lead to differences in performance when comparing the con-
ceptual size of numbers or two objects.

Our results are not automatically applicable to discrete non-
symbolic stimuli such as arrays of dots. The function of these kinds of
stimuli was more thoroughly investigated. However, numerosity was
always confounded by continuous properties such as density, total
surface area, etc. (Gebuis & Gevers, 2011). For this reason, we cannot
directly compare our results to those studies. An ongoing work in our
lab has revealed a linear trend for comparisons of dot numerosity
(Leibovich & Henik, 2013).

7. Conclusions

To summarize, to overcome some shortcomings in previous studies
supporting shared representation ofmagnitudes,we employed an iden-
tical task (comparative judgment) to investigate different types of mag-
nitude comparisons. The use of 8 ratios and the fit of the results to a
power function make our trend analysis a reliable and sensitive tool to
detect differences in discriminability of different magnitudes. Our find-
ings suggest that the relationship between discriminability and size
ratio is not always linear as previously suggested; rather, it ismodulated
by the type of comparison and the type of stimuli.
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