Is susceptibility to cross-language interference domain specific?

Anat Prior *, Tamar Degani, Sehrab Awawdy, Rana Yassin, Nachshon Korem

University of Haifa, Israel

ABSTRACT

The ability to overcome interference from the first-language (L1) is a source of variability in second language (L2) achievement, which has to date been explored mainly in same-script bilinguals. Such interference management, and bilingual language control more generally, have recently been linked to domain general executive functions (EF). In the current study, we examined L2 proficiency and executive functions as possible predictors of susceptibility to L1 interference during L2 processing, in bilinguals whose languages do not share an orthographic system. Seventy Arabic-Hebrew bilingual university students performed two tasks indexing cross-language interference (from L1 to L2). Lexical interference was assessed using a cross-modal semantic similarity judgment task in Hebrew, with false-cognates as critical items. Syntactic interference was assessed using a self-paced reading paradigm and grammaticality judgments on Hebrew sentences whose syntactic structures differed from those of Arabic. EFs were examined using spatial and numerical Stroop tasks, to index inhibitory control, and a task switching paradigm, to index shifting abilities. We found significant L1 interference across the lexical and syntactic domains, even in proficient different-script bilinguals. However, these interference effects were not correlated, and neither type of interference was related to domain general EF abilities. Finally, offline susceptibility to syntactic interference, but not lexical interference, was reduced with greater L2 proficiency. These results suggest at least partially independent mechanisms for managing interference in the two language domains, and raise questions regarding the degree to which domain general control abilities are recruited for managing L1 interference.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The two languages of bilingual speakers are simultaneously active, requiring bilinguals to continuously manage potential interference from the non-target language (Kroll, Bobb, & Hoshino, 2014). Such interference is pervasive, and has been documented in language production (Hermans, Bongaerts, De Bot, & Schreuder, 1998) and comprehension (Dijkstra & Van Heuven, 2002) for single words and in sentence context (Libben & Titone, 2009). Critically, most previous research examined bilinguals who use two languages that share the Roman alphabet, such as English-Dutch or Catalan-Spanish. The extent to which such interference is characteristic of bilinguals who speak languages which differ in orthography is less well established (Giezen, Blumenfeld, Shook, Marian, & Emmorey, 2015; Hoshino & Kroll, 2008; Morford, Kroll, Piñar, & Wilkinson, 2014; Sunderman & Priya, 2012). Thus, the first goal of the present study is to examine to what degree cross-language interference is evident in proficient bilinguals who use different-script languages (Arabic-Hebrew).

Further, interference from the first-language (L1) while processing the second-language (L2) is evident in different aspects of language processing, including accent, lexicon and grammar (MacWhinney, 2005), but these domains have mostly been investigated independently in the past. In the current study we examine the ability of individual bilinguals to manage interference in both lexical and grammatical processing. Our second goal is therefore to adopt an individual differences approach to probe to what extent interference management is a generalized ability of the linguistic system. Namely, is interference management in the lexical domain tied to interference management in the grammatical domain? Further, we test whether greater L2 proficiency is associated with improved interference management across these two language domains.

Finally, cross-language interference management has recently been linked to domain-general executive function abilities (Blumenfeld & Marian, 2013; Pivneva, Mercier, & Titone, 2014). Our third goal, therefore, is to examine whether individual differ-
ences in interference management are linked to individual differences in domain general control mechanisms.

1.1. Cross-language interference

1.1.1. Lexical domain

To examine cross-language interference, studies typically capitalize on words that might create competition, such as false-cognates (also called interlingual homographs or homophones) which overlap in form but not in meaning across languages (Dijkstra, 2005). For same-script bilinguals, false-cognates typically share both orthographic and phonological form. For different-script bilinguals, in contrast, only the phonological form is shared across the two languages, arguably creating less potential for cross-language interference. Most previous research examining cross-language interference has focused on same-script bilinguals, and provided evidence of activation of the non-target meaning of false-cognates (for a review, see Degani & Tokowicz, 2010). However, much less is known regarding cross-language interference in processing false-cognates in the two languages of different-script bilinguals.

In same-script bilinguals, presenting false-cognates in writing allows for bottom-up meaning activation in both languages (but see e.g., Friesen & Jared, 2012). To create a similar situation for different-script bilinguals, in the current study false-cognates were presented aurally, thus providing bottom-up activation for both languages. We probed cross-language interference utilizing a semantic decision task, in which the activation of the non-target language (L1) unequivocally interferes with task performance (in the L2). In a recent study, Friesen and Jared (2012) showed that the meaning of interlingual homophones (overlapping in phonology and not orthography) in the non-target language interfered with bilinguals’ semantic category decision. Specifically, French-English bilinguals were more likely to erroneously verify category membership of an interlingual homophone visually presented in English (shoe as a vegetable) when the French meaning of the word belonged to the probed category (“chou”), which shares pronunciation with “shoe”, means cabbage in French. We are unaware of parallel research in different-script bilinguals demonstrating semantic interference as a result of meaning activation of false-cognates in the non-target language (for phonological effects in masked priming in the absence of orthographic overlap see Kim & Davis, 2003, for Korean-English; Dimitropoulou, Duhlabeitia, & Carreiras, 2011, for Greek and Spanish; Nakayama, Verdonchot, Sears, & Lupker, 2014, for Japanese English).

There is indirect evidence supporting the notion of language non-selective semantic activation via phonology. Lagrou, Hartsuiker, and Duyck (2013) demonstrated that aurally presented interlingual homophones activated their meanings in both languages of Dutch-English bilinguals. This cross-language activation was modulated but not eliminated by semantic constraint and speaker accent. In different-script bilinguals, Marian and Spivey (2003b) demonstrated that in a single language context, phonological input activated concepts across the two languages of Russian-English bilinguals, using a visual world paradigm (see also Marian & Spivey, 2003a). Thus, phonological input in one language likely leads to non-selective activation of lexical and semantic information in both languages of different-script bilinguals.

In the current study we examine this issue using a cross-modal semantic decision task on L2 word pairs. In critical trials, the aurally presented first word is a false-cognate between L1 and L2 of different-script Arabic-Hebrew bilinguals, and the second word is related to the meaning of the false-cognate in the non-target language. Thus, we examine whether the L1 meaning of a false-cognate presented aurally in the L2 can interfere with semantic decisions in the L2.

1.1.2. Grammatical domain

Cross-language interference in the grammatical domain has been investigated by examining how bilinguals process structures that are similar or different across the two languages. Interference is presumed when cross-language differences hinder processing (e.g. Nitschke, Kidd, & Serratreice, 2010; for a review see Kotz, 2010). For example, in an ERP grammaticality judgment task, Tokowicz and MacWhinney (2005) showed that L2 learners of Spanish were more error prone on grammatical structures not shared with their L1 English (unique to the L2) than on structures that exist in both languages. In the same study, ERP data showed greater sensitivity to violations that occurred in structures that were similar across the L1 and the L2 than in structures that differed cross-linguistically. Sabourin and Stowe (2008) investigated the sensitivity of L2 learners of Dutch to grammatical gender violations in Dutch, using ERPs. They found that L1 speakers of German, which has a similar grammatical gender system to Dutch, processed violations in a manner similar to that of native Dutch speakers, whereas L1 speakers of Romance languages, which differ in the grammatical gender system, did not. Further, Dussias (2003) found that English-Spanish bilinguals demonstrated syntactic parsing preferences in the L2 Spanish that were similar to the preferences prevalent in English, the L1, supporting the notion of transfer in the syntactic domain (MacWhinney, 2005). Similarly, Roberts, Gullberg, and Indefrey (2008) found evidence supporting the influence of L1 Turkish on pronoun resolution in L2 Dutch.

Tokowicz and Warren (2010) examined a similar question using a self-paced reading task. They found that English speaking beginning adult L2 learners of Spanish showed online sensitivity to grammatical violations in the L2 only in structures that are similar to those of the L1, but not in L2-unique structures. In contrast, in a second sentence reading study, Tuninetti, Warren, and Tokowicz (2014) reported no evidence for cross-language influence because participants’ performance in English (L2) was not influenced by the status of the violation in their L1 (Arabic or Chinese). Notably, participants in the Tuninetti et al. (2014) study were more advanced L2 learners than participants in Tokowicz and Warren (2010), and also had L1s that differed in script from the tested L2. Thus, proficiency and/or script overlap might have led to the observed differences in performance. In addition, the later study investigated a highly salient grammatical structure (word order), and the L2 participants were very accurate in identifying violations, possibly masking L1 influences on performance.

In the current study we employ a similar paradigm to investigate cross-language influence in grammatical processing, using a self-paced reading task, with proficient bilinguals of different-script languages. Participants read sentences in the L2, half of which included grammatical structures that are similar across L1 and L2, and others with grammatical structures that differ across the two languages. Similar-structure and different-structure sentences could be either grammatically correct or include a grammatical violation. We employed a wide variety of grammatical violations in the L2, not all of which are highly salient, because less salient structures might be more sensitive to interference from the L1, especially in proficient bilinguals.

As detailed above, cross-language interference has been less investigated in different-script bilinguals. Moreover, findings from same-script bilinguals might not necessarily generalize to different-script bilinguals for two reasons. First, differences in script could theoretically reduce cross-language activation when processing written words by cuing bilinguals to the target language (Gollan, Forster, & Frost, 1997, but see Thierry & Wu, 2007). Second, even when processing spoken language, cross-language activation may vary with script overlap because the language system of different-script bilinguals may have evolved slightly differently (Sunderman & Priya, 2012), with greater sepa-
ration and less overlap in activation between the two languages (but see, Hoshino & Kroll, 2008). Thus, the first goal of the present study is to extend our understanding of cross-language interference in proficient different-script bilinguals.

In addition, lexical and grammatical interference have to date been investigated as two separate phenomena. Based on current findings, we do not know whether interference management in the lexical domain is linked to interference management in the grammatical domain. In the current study, we measured the interference management abilities of a single group of participants across both domains, allowing us to test the possible link between them.

1.2. Individual differences in interference management

There is great individual variability in many aspects of second-language acquisition and processing (Dörnyei & Skehan, 2003; Roberts, 2012). It is therefore logical to assume that individuals could differ in their ability to manage cross-language interference. Interestingly, such variability may be linked to domain-specific (linguistic) and/or domain-general (cognitive control) mechanisms. In the current study we specifically explore whether individual differences in interference management are linked to individual differences in L2 proficiency and/or to individual differences in cognitive control.

1.2.1. Proficiency

Proficiency in the L2 may modulate L1 cross-language interference in more than one way. First, increased proficiency may change the balance of baseline activation of the two languages, such that L2 representations are more accessible and/or L1 representations become less accessible (Guo, Liu, Misra, & Kroll, 2011; Linck, Kroll, & Sunderman, 2009; Van Hell & Tanner, 2012). Second, more proficient L2 users may have gained improved abilities to overcome interfering information from the L1 when it is activated. These mechanisms are not mutually exclusive and could be operating in concert. If this is the case, then bilinguals who are more balanced or who are more proficient in the L2 should show reduced effects of L1 interference when processing L2. In the current study we examine whether increased L2 proficiency leads to improved L1 interference management in the lexical domain and in the grammatical domain.

In one previous study, Chambers and Cooke (2009) examined the impact of L2 proficiency and sentence context on activation of cross-language competitors in a visual world paradigm. The results showed that native English speakers who rated themselves as more proficient in L2 (French) were as likely to consider interlingual competitors as were less proficient participants. Thus, these findings do not support the notion of a link between proficiency and cross-language activation. However, the number of items per condition was very small (n = 3) as was the number of participants (n = 20), making it more difficult to find a link between L2 proficiency and cross-language interference management. Thus, one goal of the current research is to investigate this issue more systematically.

1.2.2. Cognitive control

Bilingual language processing, which inherently entails competition between the two languages, has been recently linked with domain general executive abilities (Kroll et al., 2014). More specifically, domain-general cognitive control has been linked to bilinguals’ ability to overcome cross-language activation and interference. For example, Linck, Hoshino, and Kroll (2008) found that bilinguals who had larger working memory capacity showed smaller cognate facilitation effects in a sentence context, suggesting an improved ability to limit activation to the target language. The same study also found that bilinguals who had better inhibitory control (as indexed by a Simon task) had smaller cognate facilitation effects in a picture naming paradigm, again suggesting that they were less influenced by cross-language activation.

Further, when switching languages, bilinguals need to overcome activation of the previously used language in order to produce the target language. Bilinguals’ facility in such language switching has been linked to their general ability to switch between non-linguistic tasks (Prior & Collan, 2011; see also, Festman, Rodrigue-Fornells, & Münte, 2010), and to their inhibitory control abilities (Linck, Schwieter, & Sanderman, 2012).

Finally, using a visual world paradigm, Blumenfeld and Marian (2013) recently showed that English-Spanish bilinguals with stronger inhibitory control, measured by a Stroop task, were more likely to activate L2 cross-language competitors but were also more efficient in overcoming such activation. This relation held for both higher and lower proficiency bilinguals. Mercier, Pivneva, and Titone (2014) found a somewhat different pattern, where bilinguals with higher cognitive inhibitory control were less likely to activate cross-language competitors (see also Pivneva et al., 2014, for evidence from an L2 sentence reading task). Critically, both studies found a significant link between domain-general inhibitory control and the dynamics of cross-language activation and interference. Notably, we are currently unaware of any studies that have directly investigated this link in the grammatical domain.

Thus, our final goal in the current study is to examine the possible impact of L2 proficiency and domain-general executive control on bilinguals’ ability to overcome L1 interference when processing the L2. As stated above, these two factors are not mutually exclusive, and might concurrently influence performance.

To achieve the outlined goals, in the current study a group of proficient Arabic-Hebrew bilinguals performed a battery of executive control tasks, measures of L2 proficiency, and two experimental language tasks in Hebrew, the L2. Executive control was examined using a spatial Simon paradigm (based on Bíalystok, Craik, & Luk, 2008; Mor, Yitzhaki-Amsalem, & Prior, 2014), a numeric Stroop paradigm (based on Hernandez, Costa, Fuentes, Vivas, & Sebastian-Galles, 2010; Mor et al., 2014), and a task switching paradigm (Prior & MacWhinney, 2010). Measures of L2 proficiency included both subjective self-ratings and objective measures of Hebrew proficiency in both the lexical and the grammatical domains (see Method section below for details).

The experimental language tasks were specifically tailored to elicit cross-language interference from Arabic, the L1, and to probe participants’ ability to overcome such interference when processing Hebrew, the L2. In the lexico-semantic domain, participants performed a cross-modal semantic decision task on pairs of words presented in the L2. Critical trials included false-cognates as the first word and words that were related to the L1 meaning of the false-cognate as targets. In the grammatical domain, participants read L2 sentences in a self-paced reading paradigm, and performed grammaticality judgments. L1 interference was investigated by using syntactic structures that differ across Arabic and Hebrew.

To summarize, the results of the current investigation have the potential of expanding our understanding of cross-language interference in different-script bilinguals, the extent to which such interference management is similar across language domains, and the degree to which it might be modulated by L2 proficiency and domain general cognitive control.

2. Method

2.1. Participants

A total of 166 students at the University of Haifa participated in the study. Sixty-eight participants (20 males) were native Arabic
speakers, who spoke Hebrew as an L2, and completed all experimental tasks. The native Arabic speaking participants had studied Hebrew in a formal setting beginning in the third grade, and at the time of testing were partially immersed in Hebrew. Their university courses were conducted in Hebrew, but most of them resided in Arabic speaking communities. Native Arabic speakers had also studied English beginning in the fourth grade.

In addition, 98 native Hebrew speakers (20 males) served as controls. Of these, 38 completed both experimental language tasks (Cross-Modal priming and Self-paced reading), 30 completed only the cross-modal task and 30 completed only the self-paced reading task. All native Hebrew speakers also completed the language history questionnaire and the non-verbal intelligence measure. Native Hebrew speakers had no knowledge of Arabic, but had studied English in a formal setting since the third grade. A full description of participants’ language background is presented in Table 1. Participants had no history of learning disabilities or language impairment and were recruited through advertisements offering payment (approximately 10 USD per hour) or course-credit for participating. Participants with no history of learning disabilities were selected for the study.

2.2. Tasks and materials

2.2.1. Language proficiency assessment

2.2.1.1. Language history questionnaire. A Hebrew translation of the Language Experience and Proficiency Questionnaire (LEAP-Q; Marian, Blumenfeld, & Kaushanskaya, 2007) was administered, evaluating the exposure, use and proficiency of all known languages.

2.2.1.2. Peabody picture vocabulary test. The Hebrew adaptation of the PPVT test (Solberg & Nevo, 1979, based on Dunn, 1965) was used to evaluate participants’ Hebrew vocabulary knowledge. In this test the examiner said a word orally and participants chose one picture of four that matches the word.

2.2.1.3. University entrance Hebrew language test (YAEL). Native Arabic participants gave their consent to retrieve their scores on the Hebrew proficiency university entrance examination. This test is mandatory for non-native Hebrew speakers enrolling in higher education in Israel (parallel to the English TOEFL), and includes two parts: The first part includes multiple choice sub-tests of sentence completion, restatements and reading comprehension. The second part consists of a composition. Final scores range from 50 to 150. At the University of Haifa, incoming students must achieve a score of 120 or up to be admitted. Students receiving scores in the range of 90–119 are accepted on probation, and must re-sit the exam after their first year of study, and reach a score of 120.

2.2.2. Domain general executive function tests

2.2.2.1. Mental shifting ability. Examined by the task switching paradigm adopted from Prior and MacWhinney (2010). In this task participants are presented with red or green triangles and circles, and need to make color and shape judgments. The cue for the color task was a color gradient, and the cue for the shape task was a row of small black shapes. One response for each task (red and green for color, and circle or triangle for shape) was mapped to the right hand and the other to the left hand. The task includes single task and mixed task blocks, which included unpredictable switches between tasks. In the mixed blocks 50% of the trials were switch trials and 50% were repeat trials.

The task yields two measures of shifting abilities: Switching costs are the differences in performance between switch and non-switch trials in the mixed blocks; Mixing costs are the differences in performance between single-task trials in the single-task blocks and non-switch trials in the mixed blocks. Two joint measures, each incorporating costs in both RTs and accuracy were calculated — one for switching and one for mixing — using the bin scoring method, as elaborated in the results section (Hughes, Linck, Bowles, Koeth, & Bunting, 2014).

2.2.2.2. Inhibitory function. Inhibitory function was measured using two nonlinguistic tasks.

2.2.2.2.1. Numeric Stroop. Numeric Stroop was adopted from Hernandez et al. (2010). In each trial, participants were instructed to indicate by button press, as quickly and accurately as possible, how many items appear on the screen (range from 1 to 3). There were three experimental conditions: neutral (xxx), congruent (333), and incongruent (111), with trials presented in a random order. The interference effect was calculated as differences in performance between congruent and incongruent trials, using the bin scoring method (Hughes et al., 2014).

2.2.2.2.2. Simon arrows. Simon Arrows (also called spatial Stroop) adopted from Bialystok et al. (2008; used also by Mor et al., 2014). In each trial, an arrow pointing either left or right appeared on the screen. In the basic condition, the arrow appeared in the center of the screen, and participants were instructed to respond to the direction of the arrow as quickly and accurately as possible. In the conflict condition, the target arrows were presented on the left or right sides of the display, creating congruent trials when the direction and position corresponded, and incongruent trials when they are in conflict. Participants were instructed to press the button indicating the direction of the arrow irrespective of the position. The Simon effect was calculated as differences in performance between congruent and incongruent trials in the conflict block, using the bin scoring method (Hughes et al., 2014).

Finally, following the procedures of Bialystok et al. (2008; see also Mor et al., 2014), the reverse condition was a measure of response inhibition: the display was identical to the display in the basic condition with an arrow appearing in the center of the screen. However, the instructions were reversed — to press the response button in the direction opposite to the one indicated by the arrow. The Reverse effect was calculated as differences in performance between the basic and reverse blocks, using the bin scoring method (Hughes et al., 2014).

2.2.2.3. Memory tasks. In order to give a full characterization of executive functions, native Arabic speaking participants also completed a working memory task, namely the Operation span task adapted from Turner and Engle (1989). However, participants had very low accuracy rates on the mathematical operations (M = 62% correct), deeming the word span memory measure uninterpretable. Thus, working memory (updating) abilities were not included in the predictive models reported in the results section. Finally, native Arabic participants completed two additional tasks: Raven’s Progressive Matrices – a measure of nonverbal intel-

Table 1

<table>
<thead>
<tr>
<th>Language Group</th>
<th>Native Arabic (SE)</th>
<th>Native Hebrew (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>21.85 (0.26)</td>
<td>25.97 (0.36)</td>
</tr>
<tr>
<td>Arabic self-rated proficiency</td>
<td>9.71 (0.08)</td>
<td>-</td>
</tr>
<tr>
<td>Arabic self-rated use</td>
<td>56.84 (1.97)</td>
<td>-</td>
</tr>
<tr>
<td>Hebrew self-rated proficiency</td>
<td>8.23 (0.15)</td>
<td>9.83 (0.03)</td>
</tr>
<tr>
<td>Hebrew self-rated use</td>
<td>35.65 (1.97)</td>
<td>83.35 (1.72)</td>
</tr>
</tbody>
</table>

Note: Self-rated proficiency scores were given on a scale from 1 to 10. Proficiency was averaged across oral and written comprehension and production. Self-Rated use was reported in percentage of the time participants used each language currently. Percentages to not reach 100% because participants also reported using English part of the time.

*p < 0.001.
ligence (Raven, Raven, & Court, 1976), and a phonological short-term memory measure, examined using a non-word repetition task (Shatil, 2002). Performance on both tasks did not correlate with performance on the experimental tasks or on executive function measures, and they are therefore not discussed further.

2.2.3. Linguistic experimental tasks

Two tasks were designed to probe cross-language activation and interference from L1 (Arabic) when performing a task in the L2 (Hebrew), for native Arabic speakers. For each of these tasks a group of native Hebrew speakers served as controls (see participant section above).

2.2.3.1. Cross modal priming. Participants listened to a Hebrew prime-word (recorded by a female native Hebrew speaker) through headphones, and were then presented with a written Hebrew target word on a computer screen. They were asked to decide by button press if the target word that they saw was semantically related to the auditory prime-word, by pressing the left button for ‘no’, and the right button for ‘yes’.

On critical trials, the prime was a false-cognate in Hebrew and Arabic – it was phonologically similar in Arabic and Hebrew but did not have the same meaning. For example, “bread” in Hebrew is pronounced “lehem”, whereas in Arabic the word “laḥem” sounds very similar, but means “meat”. Target words (e.g., Butcher shop, “yad” in Hebrew) were semantically related to the Arabic meaning of the false-cognate (“meat”) but were not related to the Hebrew meaning (bread), so the correct response in these trials was always “no”. For each critical prime a matched control item was selected. Control primes did not share either meaning or phonology in Hebrew and Arabic (for example, “clothing” – ‘beged’ in Hebrew and ‘lebas’ in Arabic), and were also not semantically related to the target word (butcher shop), so the correct response is also “no” (for a full example, see Table 2).

Critical and control primes did not differ significantly in either length in phonemes (t(41) = 0.18, p = 0.855) (M = 3.6, SD = 0.96; M = 3.6, SD = 0.91; for critical and control primes, respectively) or lexical frequency in Hebrew (based on HebWaC corpus via SketchEngine, see Kilgarriff, Reddy, Pomikálek, & Avinesh, 2010; Kilgarriff et al., 2014) (t(40) = 1.34, p = 0.187) (M = 54.2, SD = 65.9; M = 41.5, SD = 65.3, for critical and control primes, respectively). In addition, semantic similarity judgments for the prime-target pairs (critical and control) were gathered from 10 native Hebrew speaking university students (who do not know Arabic) on a scale of one to seven, for course credit. To this end, two versions of a computerized questionnaire were created, such that each target word appeared once in each version, but across participants each target word was presented with both critical and control primes. There were no significant differences in the rated semantic similarity of the critical primes and the control primes with the target words (t(41) = 1.39, p = 0.170) (M = 1.5, SD = 0.6, M = 1.4, SD = 0.6 for critical and control primes, respectively).

In addition to critical items, two types of fillers were added to the list. First, an equal number of Arabic-Hebrew cognates were added to the list, such that phonological overlap was not an immediate cue for meaning competition. For example, the word “yad” that sounds similar in Arabic and in Hebrew, carries the meaning “hand” in both languages. The target words following cognate primes (e.g., knee) were semantically related to the auditory prime-word and thus, the correct answer in these trials was always ‘yes’. For each cognate prime, a control prime that was equally semantically related to the target was selected.

Second, 78 filler pairs, in which primes were neither cognates nor false-cognates between Hebrew and Arabic, were added to the experiment in order to conceal the form overlap manipulation. In half of these filler pairs, the prime was semantically related to the target (e.g. chair-table) and in the other half it was semantically unrelated (e.g., lamp-socks).

Two experimental lists were constructed, each completed by half of the participants in each group in the main study. Each version contained 162 stimuli, 42 experimental false-cognate items (21 critical primes and 21 control primes), 42 filler cognate items (21 critical primes and 21 control primes), and 78 phonologically unrelated fillers (39 semantically related and 39 semantically unrelated). Each participant saw each target word only once, but each target appeared with control and critical primes for different participants. Stimuli were presented in random order to each participant.

The experimental task began with instructions presented on the computer screen, followed by eight practice trials. In each trial, participants first heard the prime word through headphones, and 500 ms later the target was presented on the screen until a response was given. The next trial began after an ITI of 500 ms. The list was presented in two blocks, with a short break introduced between them.

2.2.3.2. L2 self paced reading and grammaticality judgment. Participants read sentences in Hebrew, using a self-paced reading paradigm, and performed a grammaticality judgment at the end of each sentence. Half of the sentences were grammatical in Hebrew, and half were not. Five grammatical structures that are shared between Hebrew and Arabic (i.e., Similar Condition), and 5 grammatical structures where the languages differ (i.e., Different Condition) were used in the experiment (see Table 3).

For each structure, 12 sentences were constructed, with a grammatical variation and an ungrammatical variation for each sentence (for a full list of stimuli, see Appendix A). Although the position of the critical word creating the grammatical violation varied, there were always at least two words preceding it, and two content words following it. Target sentences in the different conditions were constructed such that relying on Arabic grammar would lead to an error in judging the Hebrew sentence (for example see Table 4).

From these materials, two experimental lists were constructed. One list included six grammatical and six ungrammatical sentences from each of the ten structures, and the second list was comprised of the complementary sentences. Each list was completed by half of the participants in each group. Therefore, across participants, both variations of each sentence were presented an equal number of times, but no participant saw both the grammatical and the ungrammatical variation of the same sentence.

Prior to the beginning of the experimental task, participants were presented with written instructions in Hebrew, followed by a practice block including four sentences. Participants were given feedback on their performance in the practice block, but not during the experiment itself.

Throughout the task, sentences were presented to participants using a self-paced reading paradigm using E-prime software (Psychology Software Tools, Pittsburgh, PA). Each trial started with a fixation, and participants pressed the response box to initiate the sentence and progress through it word-by-word. All words
appeared at the center of the screen, and the sentence-final word appeared with a period or a question mark. Following each sentence, the question “Is this sentence grammatical?” in Hebrew appeared in the middle of the screen, and participants responded by button press, as quickly and as accurately as possible. Participants had the opportunity to take a short break after every 40 sentences.

Sensitivity to violations was evaluated by comparing reading times on the word at which the violation became evident in the ungrammatical conditions (critical word ‘n’) to reading times on the analogous word in the grammatical conditions. The word following the critical word (‘n + 1’) was analyzed to capture spill-over effects. Notably, the ‘n’ and ‘n + 1’ words in the grammatical and ungrammatical variations of the sentences were necessarily different. The sentence-final word was analyzed to investigate sentence wrap-up effects. Sensitivity (d prime) of the grammaticality judgements was also analyzed.

2.3. Procedure

Participants provided informed consent for participation. Native Arabic speakers completed all tasks, for a total of approximately two and half hours. Participants were given the option to take breaks as needed. Participants who did not manage to complete all the tasks in one session returned for a second session. The two experimental interference tasks, namely cross-modal priming and the self-paced reading tasks, were always separated by at least 2 non-linguistic tasks. As noted above, native Hebrew controls completed one or both of the experimental language tasks, the non-verbal IQ task, and filled out the LEAP-Q.

3. Results

3.1. Lexical interference: cross-modal priming

In order to examine cross language influences we conducted separate two-way repeated measures ANOVA on RTs and accuracy rates. Interference was probed in a two-way analysis with condition (False cognate, control) as a within participant variable and language group (Hebrew, Arabic) as a between participant factor. A parallel item analysis was conducted. Two critical false-cognate items were removed from the final analysis, because accuracy rates for these items were below 60% in the native Hebrew control group suggesting that these were perceived as semantically related. In the RT analysis, there was a significant main effect of condition \[F(1,126) = 10.538, \ p < 0.001, \ \eta^2_p = 0.077; \ F(1,39) = 6.332, \ p < 0.05, \ \eta^2_p = 0.140\]. Overall, RTs to targets following false-cognate primes were slower than to targets following control primes. In addition, there was a significant main effect of language group \[F(1,126) = 76.817, \ p < 0.001, \ \eta^2_p = 0.379; \ F(1,39) = 417.42, \ p < 0.001, \ \eta^2_p = 0.915\], as native Hebrew speakers responded faster overall than native Arabic speakers. Importantly, these main effects were qualified by a significant two-way interaction in both the subject and the item analyses \[F(1,126) = 4.515, \ p < 0.05, \ \eta^2_p = 0.035; \ F(1,39) = 5.234, \ p < 0.05, \ \eta^2_p = 0.118\]. Planned comparisons showed that this interaction was driven by the fact that native Arabic speakers responded more slowly to targets following a false-cognate prime in comparison to targets following a control prime \[(t_{1}(59) = 2.697, \ p < 0.01; \ t_{2}(39) = 2.637, \ p < 0.05)\), whereas the native Hebrew speakers responded equally fast to both types of targets \[(t_{1}(67) = 1.682, \ NS; \ t_{2}(39) = 0.995, \ NS)\) (see Fig. 1, panel A). The accuracy analysis also showed a significant main effect of Condition \[F(1,126) = 77.945, \ p < 0.001, \ \eta^2_p = 0.382; \ F(1,39) = 10.252, \ p < 0.01, \ \eta^2_p = 0.208\], because accuracy rates following false-cognate primes were lower than following control prime.
There was again a significant main effect of language group $[F(1, 126) = 152.877, p < 0.001, \eta^2_p = 0.548]$; $F_2(1, 39) = 105.935, p < 0.001, \eta^2_p = 0.731]$, because overall accuracy rates of the native Hebrew speakers were higher than those of the native Arabic speakers. Importantly, as in the RT analysis, the two-way interaction was significant $[F_1(1, 126) = 18.853, p < 0.001, \eta^2_p = 0.13; F_2(1, 39) = 6.505, p < 0.05, \eta^2_p = 0.143]$. As can be seen in Fig. 1 (panel B), the difference between false cognate and control primes was almost 3 times larger for the native Arabic speakers (13%) than for the native Hebrew speakers (5%), even though planned comparisons showed that the effect was significant for both groups ($t_1(59) = 7.403, p < 0.001; t_2(39) = 3.103, p < 0.05$ for Arabic speakers; $t_1(67) = 4.344, p < 0.001; t_2(39) = 2.581, p < 0.05$ for Hebrew speakers).

The unexpected difference in accuracy between critical and control primes found for the native Hebrew speakers makes it more difficult to attribute the difference found for native Arabic speakers to cross-language interference. The difference for native Hebrew speakers may reflect problems in the initial classification of pairs as related or unrelated. This initial classification was based on a 1–7 off-line rating scale, which may not account fully for the performance on the online experimental task. In order to further investigate and clarify this issue, we collected additional data from a new group of 20 native Hebrew speakers. Based on the performance of this group, we selected a subset of better matched items. Specifically, items where accuracy for both the critical and control primes fell below 90% were eliminated, leading to a final set of $n = 30$. We chose this cutoff because performance accuracy was very high ($M = 98\%$, $SD = 4.1\%$) – thus, we eliminated items that deviated from the mean by more than two standard deviations. Analysis with this better matched subset of items revealed that the difference in accuracy between critical and control items remained robust and highly significant for the native Arabic speakers ($t_1(59) = 4.7, p < 0.001; t_2(29) = 2.1, p < 0.05$), but was no longer significant for the original group of native Hebrew speakers ($t_1(66) = 1.1, p = 0.27; t_2 < 1$). The pattern for RTs remained the same as in the initial analysis.

3.2. Grammatical interference: self-paced reading

In order to examine L1 interference in L2 grammatical processing, we conducted three 3-way repeated measures ANOVAs on reading times (RTs) of the critical word (n), the $n + 1$ word and the sentence-final word. Interference was probed in an analysis with grammaticality (grammatical, ungrammatical) and similarity (similar structure, different structure) as within participant variables, and language group (Hebrew, Arabic) as a between participant variable. A parallel item analysis was conducted, using a 3-way repeated measures ANOVA. Interference was probed in an analysis with grammaticality (grammatical, ungrammatical) and L1 group (Hebrew, Arabic) as within item variables, and Similarity (similar structure, different structure) as a between item variable. Nine item pairs were omitted from analysis because of low accuracy (under 60%).

In addition, a 2-way repeated measures ANOVA was conducted on sensitivity scores (d’ prime) of the grammaticality judgments with similarity (similar, different) as a within participant variable, and language group (Hebrew, Arabic) as a between participant variable.

3.2.1. Critical word reading times

Two main effects were significant in both analyses: grammaticality $[F_1(1, 129) = 234.377, p < 0.001, \eta^2_p = 0.645; F_2(1, 109) = 181.559, p < 0.001, \eta^2_p = 0.625]$, and language group $[F_1(1, 129) = 110.563, p < 0.001, \eta^2_p = 0.462; F_2(1, 109) = 564.659, p < 0.001, \eta^2_p = 0.838]$. The main effect of similarity was significant in the subject analysis $[F_1(1, 129) = 19.603, p < 0.001, \eta^2_p = 0.132]$, but not the item analysis $[F_2(1, 109) = 1.061, NS]$. Here, as in all remaining analyses, reading times of native Arabic speakers (reading in the L2) were longer than of native Hebrew speakers (reading in the L1). The effects of grammaticality and of similarity were modified by significant two-way interactions with language group.

The two-way interaction between grammaticality and language group was significant $[F_1(1, 129) = 48.512, p < 0.001, \eta^2_p = 0.273; F_2(1, 109) = 46.429, p < 0.001, \eta^2_p = 0.299]$. Reading times of critical words were longer in the ungrammatical than in grammatical sentences across both participant groups but this effect was larger in the native Arabic speakers ($t_1(68) = 13.254, p < 0.001; t_2(110) = 10.848, p < 0.001$) than in the native Hebrew speakers ($t_1(61) = 8.554, p < 0.001; t_2(110) = 12.651, p < 0.001$) (see Table 5).

The two-way interaction of similarity and language group was also significant $[F_1(1, 129) = 26.804, p < 0.001, \eta^2_p = 0.172; F_2(1, 109) = 4.429, p < 0.05, \eta^2_p = 0.039]$. This interaction was driven by the fact that for native Hebrew speakers critical-word reading times did not differ between similar and different structures ($t_1(61) = 1.045, NS; t_2(110) = 0.949, NS$), whereas for native Arabic speakers critical-word reading times were shorter for different structures than for similar structures in the subject analysis ($t_1(68) = 5.389, p < 0.001$), but not in the item analysis ($t_1(110) = 1.505, NS$). All remaining interactions were not significant.

3.2.2. Spillover effects (word n + 1 reading times)

All three main effects were significant: grammaticality $[F_1(1, 129) = 48.537, p < 0.001, \eta^2_p = 0.273; F_2(1, 109) = 40.305, p < 0.001, \eta^2_p = 0.27]$, similarity $[F_1(1, 129) = 38.506, p < 0.001, \eta^2_p = 0.230; F_2(1, 109) = 7.355, p < 0.01, \eta^2_p = 0.063]$, and language group $[F_1(1, 129) = 160.309, p < 0.001, \eta^2_p = 0.554; F_2(1, 109) = 418.935, p < 0.001, \eta^2_p = 0.815]$. All three 2-way interactions were also significant (grammaticality by language group: $F_1(1, 129) = 13.998, p < 0.001, \eta^2_p = 0.098; F_2(1, 109) = 13.737, p < 0.001, \eta^2_p = 0.112$; similarity by language group: $F_1(1, 129) = 31.511, p < 0.001, \eta^2_p = 0.196; F_2(1, 109) = 11.427, p < 0.001, \eta^2_p = 0.095$; grammaticality by similarity: $F_1(1, 129) = 20.231, p < 0.001, \eta^2_p = 0.136; F_2(1, 109) = 7.332, p < 0.001, \eta^2_p = 0.063$). Critically, these two-way interactions were further modified by a significant three-way interaction $[F_1(1, 129) = 10.792, p < 0.001, \eta^2_p = 0.077; F_2(1, 109) = 6.17, p < 0.05, \eta^2_p = 0.054]$. In order to specifically explore the effect of L1 interference, we examined the effect of grammatical overlap– comparing similar and different sentence structures – separately for the grammatical and ungrammatical conditions.

For grammatically correct sentences, there was a marginally significant interaction between language group and similarity, $[F_1(1, 129) = 3.6, p = 0.06, \eta^2_p = 0.03; F_2(1, 109) = 2.782, p = 0.098, \eta^2_p = 0.025]$. Planned comparisons revealed that native Hebrew speakers were equally fast in processing the $n + 1$ word in Hebrew sentence structures regardless of whether they were shared with Arabic (t < 1, in both subject and item analysis). In contrast, native Arabic speakers were marginally slower in reading the $n + 1$ word in Hebrew sentence structures that were not shared with Arabic in the subject analysis ($t(68) = 1.8, p = 0.07$), but this effect was not significant in the item analysis.

For ungrammatical sentences, a similar pattern of reading times emerged, but effects did reach statistical significance. There was a significant two-way interaction between language group and similarity, $[F_1(1, 129) = 32.3, p < 0.001, \eta^2_p = 0.2; F_2(1, 109) = 349.172,
Planned comparisons showed that for native Hebrew speakers there was a marginally significant difference in reading times for similar and different structures in the subject analysis only ($t_{1}(61) = 1.8$, $p = 0.08$; $t_{2} < 1$). However, native Arabic speakers were significantly slower in reading the n + 1 word in sentences with non-overlapping grammatical structures across the two languages in both analyses, $t_{1}(68) = 6.9$, $p < 0.001$; $t_{2}(109) = 3.933$, $p < 0.001$.

As was the case in the lexical interference task, here again there is some evidence of the cross-language manipulation seeming to influence the performance of the native Hebrew speakers as well (even though of course they do not know Arabic). To address this issue, the new group of 20 native Hebrew speakers described above also completed the self-paced reading task. Based on their performance, we again selected a subset of better matched items. Performance accuracy of the native Hebrew speaking group was lower in this task ($M = 91\%$, $SD = 16\%$) than in the cross-modal task. In order to retain a sufficient number of items, we decided to employ a less stringent criterion than we used in the Cross-Modal priming task, and thus only eliminated sentences with accuracy rates of less than 80%. Then from the remaining stimuli we selected an equal number of sentences per condition, such that accuracy rates in the new group of participants were equivalent across the similarity conditions. As described below, analysis with this new matched set of 76 sentences resembled but was not identical to the pattern described above.

Table 5
Reading times in milliseconds (SEM) for the critical word, n + 1 word, and sentence final word, by grammaticality and structure similarity, by language group.

<table>
<thead>
<tr>
<th></th>
<th>Native Hebrew</th>
<th>Arabic-Hebrew bilinguals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Similar</td>
<td>Different</td>
</tr>
<tr>
<td>Critical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grammatical</td>
<td>536 (19)</td>
<td>523 (19)</td>
</tr>
<tr>
<td>Ungrammatical</td>
<td>643 (32)</td>
<td>673 (30)</td>
</tr>
<tr>
<td>n + 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grammatical</td>
<td>528 (19)</td>
<td>521 (19)</td>
</tr>
<tr>
<td>Ungrammatical</td>
<td>564 (18)</td>
<td>584 (18)</td>
</tr>
<tr>
<td>Final</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grammatical</td>
<td>673 (35)</td>
<td>762 (43)</td>
</tr>
<tr>
<td>Ungrammatical</td>
<td>475 (20)</td>
<td>562 (26)</td>
</tr>
</tbody>
</table>

$p < 0.001$, $\eta^2_p = 0.762$. Planned comparisons showed that for native Hebrew speakers there was a marginally significant difference in reading times for similar and different structures in the subject analysis only ($t_{1}(61) = 1.8$, $p = 0.08$; $t_{2} < 1$). However, native Arabic speakers were significantly slower in reading the n + 1 word in sentences with non-overlapping grammatical structures across the two languages in both analyses, $t_{1}(68) = 6.9$, $p < 0.001$; $t_{2}(109) = 3.933$, $p < 0.001$. As was the case in the lexical interference task, here again there is some evidence of the cross-language manipulation seeming to influence the performance of the native Hebrew speakers as well (even though of course they do not know Arabic). To address this issue, the new group of 20 native Hebrew speakers described above also completed the self-paced reading task. Based on their performance, we again selected a subset of better matched items. Performance accuracy of the native Hebrew speaking group was lower in this task ($M = 91\%$, $SD = 16\%$) than in the cross-modal task. In order to retain a sufficient number of items, we decided to employ a less stringent criterion than we used in the Cross-Modal priming task, and thus only eliminated sentences with accuracy rates of less than 80%. Then from the remaining stimuli we selected an equal number of sentences per condition, such that accuracy rates in the new group of participants were equivalent across the similarity conditions. As described below, analysis with this new matched set of 76 sentences resembled but was not identical to the pattern described above.
For grammatically correct sentences, there was now a significant interaction between language group and similarity, $F(1,128) = 7.5, p = 0.007, \eta_p^2 = 0.06$; $F(1,74) = 5.46, p = 0.02, \eta_p^2 = 0.07$. Planned comparisons revealed that native Hebrew speakers were equally fast in processing the n + 1 word in Hebrew structures regardless of whether they were shared with Arabic ($t < 1$, in both subject and item analysis). In contrast, native Arabic speakers were significantly slower in reading the n + 1 word in Hebrew sentence structures that were not shared with Arabic in the subject analysis ($t(68) = 3.5, p = 0.001$) and marginally so in the item analysis ($t(74) = 1.8, p = 0.07$).

For the ungrammatical sentence we found a significant main effect of similarity ($F(1,128) = 52.8, p < 0.001, \eta_p^2 = 0.29$; $F(1,74) = 16.7, p < 0.001, \eta_p^2 = 0.19$) and an interaction with group ($F(1,128) = 49.5, p < 0.001, \eta_p^2 = 0.28$; $F(1,74) = 25.1, p < 0.001, \eta_p^2 = 0.25$). Planned comparisons show a significant effect of similarity for the native Arabic speakers ($t(68) = 7.9, p < 0.001; t(74) = 4.8, p < 0.001$) but this effect was now completely non-significant for the native Hebrew participants ($t_1 < 1$; $t_2 < 1$). Thus, this improved analysis with better matched items shows significant disparities in processing similar and different grammatical structures for the native Arabic but not the native Hebrew speakers, increasing our confidence that cross-language interference is indeed the source of these effects.

3.2.3. Wrap up (sentence-final word reading times)

As in previous analyses, again all three main effects were significant: similarity, $F(1,129) = 22.258, p < 0.001, \eta_p^2 = 0.147$; $F_2(1,109) = 4.602, p < 0.05, \eta_p^2 = 0.041$, language group, $F_1(1,129) = 73.476, p < 0.001, \eta_p^2 = 0.363$; $F_2(1,109) = 299.964, p < 0.001, \eta_p^2 = 0.733$, and grammaticality, $F_1(1,129) = 63.537, p < 0.001, \eta_p^2 = 0.33$; $F_2(1,109) = 50.334, p < 0.001, \eta_p^2 = 0.316$. As has been reported in previous studies (Tokowicz & Warren, 2010), the effect of grammaticality was reversed in the final word, namely faster reading times in the final word of ungrammatical than grammatical sentences. The two-way interaction between grammaticality and language group was significant $F_1(1,129) = 5.126, p < 0.05, \eta_p^2 = 0.038$; $F_2(1,109) = 5.112, p < 0.05, \eta_p^2 = 0.045$. The effect of grammaticality was numerically larger for the native Arabic speakers than for the native Hebrew speakers, but was statistically significant in both groups ($ps < 0.001$) (see Table 5). All remaining interactions were not significant. The new analysis including the better matched subset of sentences yielded the same patterns of results, with the exception that in the item analysis the interaction between grammaticality and language group was only marginal, and not significant $F_2(1,148) = 3.04, p = 0.083, \eta_p^2 = 0.027$.

3.2.4. d' analysis on the grammaticality judgment accuracy

There was a significant main effect of syntactic similarity $F(1,129) = 52.86, p < 0.001, \eta_p^2 = 0.484$. Grammatical sensitivity in similar structures was higher than in different structure. The main effect of language group was also significant $F(1,129) = 162.583, p < 0.001, \eta_p^2 = 0.558$. As expected, native Hebrew speakers showed higher grammatical sensitivity than native Arabic speakers (see Fig. 2). Critically, there was a significant two-way interaction between similarity and language group $F(1,129) = 22.307, p < 0.001, \eta_p^2 = 0.147$. This interaction was driven by the fact that the effect of similarity, although statistically significant in both participant groups, was more than twice as large for native Arabic speakers ($t(68) = 11.109, p < 0.001$) than for native Hebrew speakers ($t(61) = 4.47, p < 0.001$) (see Fig. 2).

An analysis of d' sensitivity performance based on the new, better matched set of materials yielded the exact same pattern of results, including a smaller but still significant effect of similarity for the native Hebrew speakers (interaction between similarity and language group $F(1,128) = 4.18, p = 0.04 \eta_p^2 = 0.03$; effect for native Arabic speakers ($t(68) = 4.64, p < 0.001$; effect for native Hebrew speakers ($t(60) = 3.0, p = 0.003$).

3.3. Correlation and regression analyses

3.3.1. Correlations between lexical and grammatical interference management

The first issue we wished to examine was whether the ability to overcome L1 interference during L2 processing is general, i.e., shared across linguistic domains (lexicon and grammar). To this end, we calculated the correlations between measures of interference extracted from each of the tasks, across the group of Arabic-Hebrew bilinguals. From the cross-modal priming task, we focused on the interference effect in RT and accuracy. From the Self-Paced reading task, we selected the difference in reading times of the n + 1 word between the different vs. similar structures, collapsing across grammatical and ungrammatical sentences. We opted to collapse across both categories, because in both cases Arabic-Hebrew bilinguals showed reliably longer RTs for different structures than for similar structures, whereas native Hebrew speakers were not affected by similarity. In addition, we included the d' prime measure from the different condition, as it indexes participants' ability to base their judgments solely on the L2 grammar, while overcoming interference from the L1 grammar. These two measures were selected because cross-language interference was most robust on these measures. Correlations across all these measures were found to be non-significant (all $r < 0.15$ all $p > 0.28$, see Fig. 3). Such a lack of correlation could stem from noisy measures, however, typical split-half correlations (even-odd) show reasonable reliability ($0.57 < r < 0.89$, all $ps > 0.0001$). Thus, we did not find support for the notion that the ability to overcome interference from the L1 when processing L2 is generalized across lexicon and grammar.

3.3.2. Predicting cross-language interference with L2 proficiency and executive function

We further examined whether the ability to overcome L1 interference might be related to general measures of L2 proficiency as well as domain-general executive function abilities, within the Arabic-Hebrew bilingual participants. Again, cross-language interference was indexed by the four dependent measures that yielded the most robust effects: Interference effect in RT and accuracy from the cross-modal priming task; the difference in n + 1 reading times between the different vs. similar structures from the self-paced reading task; the d' prime measure from the different condition in the self-paced reading task.

Before conducting hierarchical regressions, we examined the correlations among the various L2 proficiency and executive function measures. Correlations among the L2 proficiency measures (Hebrew vocabulary, Hebrew university entrance exam, Hebrew proficiency self-rating were moderate (rs between 0.23 and 0.49, ps between 0.06 and 0.001, see Table 6).

For the executive function battery, all 10 standard EF effects were statistically significant (Simon congruency effect in RT and ACC, Simon reverse effect in RT and Accuracy, Stroop congruency effect in RT and accuracy, Switching costs and Mixing costs). Per-

1 Analyzing reading times of the critical words in the subset of better-matched sentences described here yielded the exact same pattern of results as reported above in Section 3.2.1.
performance on the Simon, Stroop and task switching paradigms is presented in Tables 7 and 8.

Based on literature urging caution in using difference scores in prediction models, due to their potentially reduced reliability (e.g. Cronbach & Furby, 1970; Edwards, 2001; Hughes et al., 2014; Zimmerman, 2005) we decided to calculate bin scores for each of the EF effects. Bin scores create a combined measure for costs in performance in both RT and accuracy when comparing the more

Fig. 2. D' sensitivity measure for grammaticality judgments for similar and different structures, by language group.

Fig. 3. Scatterplots of correlations between lexical and grammatical interference. Panel A: RT (Lexical interference: Difference between false cognates and control primes; Grammatical interference: Difference between $n + 1$ reading times for similar and different structures); Panel B: Accuracy (Lexical interference: Difference between false cognates and control primes; Grammatical interference: D' sensitivity in grammaticality judgements of different structures).

Table 6
correlations matrix for L2 (Hebrew) proficiency scores.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Hebrew vocabulary</td>
<td>0.492*</td>
<td>0.335**</td>
</tr>
<tr>
<td>2. University entrance exam</td>
<td>0.234*</td>
<td></td>
</tr>
<tr>
<td>3. Proficiency self-rating</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* $p < 0.01$.
** $p < 0.001$.
Table 7

<table>
<thead>
<tr>
<th>Neutrual</th>
<th>RT</th>
<th>ACC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>404 (6.3)</td>
<td>988 (0.3)</td>
</tr>
<tr>
<td>Congruent</td>
<td>448 (6.7)</td>
<td>999 (0.1)</td>
</tr>
<tr>
<td>Incongruent</td>
<td>501 (8.6)</td>
<td>96.6% (0.4)</td>
</tr>
<tr>
<td>Reverse</td>
<td>499 (12.0)</td>
<td>97.5% (0.4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concurrency effect</th>
<th>RT</th>
<th>ACC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>53</td>
<td>2.4%</td>
</tr>
</tbody>
</table>

| Reverse effect | 94 | 1.4% |

We then conducted hierarchical regression analyses on the four measures of cross-language interference – namely, RT and accuracy costs for false cognates in the Cross-Modal task, difference in n + 1 reading times between different and similar structures in the Self-Paced reading task, and d* for the grammaticality judgment task for different structures. We entered the L2 proficiency measures on the first step and the 5 EF bin scores on the second step. In these analyses, L2 proficiency significantly predicted performance in the d* for different sentences from the grammaticality judgment task ($\Delta R^2 = 0.4$, $df = 60$, $p < 0.001$), such that higher L2 proficiency was associated with reduced cross-language interference. To reach a better understanding whether this finding indeed reflects a link between L2 proficiency and the specific ability to overcome L1 interference, we conducted an additional analysis, in which we entered participants’ d* score for similar sentences (reflecting their basic ability to perform grammaticality judgments in the L2) in the regression, only then followed by the L2 proficiency measures. In this analysis, L2 proficiency was again found to be a significant predictor of cross-language grammatical interference management ($\Delta R^2 = 0.31$, $df = 3$, $p < 0.001$), even after controlling for baseline grammatical knowledge in the L2. L2 proficiency did not significantly explain variability in performance in the remaining three measures of cross-language interference ($p > 0.11$).

The contribution of the executive function measures to the regression models did not reach significance (for lexical interference effects in RT $p = 0.24$ and in accuracy $p = 0.06$, for grammatical interference effects in reading times $p = 0.35$ and in d* $p = 0.72$).*

4. General discussion

The current study examined cross-language interference in proficient different-script bilinguals. In both lexicon and grammar, the current findings provide strong evidence of L1 interference during L2 processing. Specifically, lexical processing in Hebrew, the L2 of proficient Arabic-Hebrew bilinguals, was influenced by activation

* We also conducted hierarchical regression using the forward entry method, in which only significant predictors are retained in the model. These yielded the same results overall, with one exception. Namely, in predicting the accuracy effect in the lexical cross-modal task, the Simon conflict bin score was identified as explaining an additional 7% of the variance ($p = 0.045$) (in this case smaller bin scores were associated with less interference in accuracy in the lexical task). Because of the theoretically unexpected direction of prediction, and in light of the relatively large number of regression models computed, we consider these to be spurious associations, and thus refrain from interpreting them further.
of the non-target language, Arabic. In a Hebrew semantic similarity judgment task, the non-target, Arabic, meaning of false-cognates hindered the performance of Arabic–Hebrew bilinguals, when compared to the performance of a control native Hebrew group, in both accuracy and reaction times. In addition, during an L2 (Hebrew) sentence reading task, Arabic–Hebrew bilinguals showed evidence of activation of the irrelevant grammatical features of the L1 (Arabic). As evident in both reading time measures and d’ in grammaticality judgments, Arabic–Hebrew bilinguals encountered more difficulty when processing Hebrew sentences whose grammatical structures differed between Hebrew and Arabic. These interference effects were manifest in the spillover and sentence final regions, but not on the critical word itself. It is possible that the slower time course of reading in the L2 (Copp, Dragić, & Duyck, 2015) results in delayed sensitivity to such grammatical manipulations (for a similar pattern see Tokowicz & Warren, 2010). This question should be further addressed in future research.

Notably, the native Hebrew speakers were also slightly less accurate when judging the grammaticality of sentences that differ in structure across Hebrew and Arabic, than those that share structure across languages. This difference cannot be explained by cross language influences, because the native Hebrew speaking participants did not know Arabic. Instead, it is most likely rooted in the fact that by definition unique grammatical structures were used in each of the conditions, and perhaps there are some inherent differences in their processing difficulty in Hebrew, possibly stemming from a difference in frequency of occurrence of the constructions in the language. Critically, the effect was twice as large for Arabic–Hebrew bilinguals, and in addition only Arabic–Hebrew bilinguals, but not native Hebrew speakers, showed online sensitivity to the structural manipulation. Thus, we sustain that the performance of Arabic–Hebrew bilinguals was influenced, even if not exclusively, by interference from their L1, Arabic.

The cross-language effects demonstrated in the current study offer strong support for the notion of language non-selective activation (Degani & Tokowicz, 2010; Dijkstra, 2005; Kroll et al., 2014) even in different-script bilinguals. For such populations, orthographic stimuli are unambiguous with regards to language membership, and thus provide limited bottom-up activation of the non-target language. Despite these constraints, Arabic–Hebrew bilinguals were influenced by Arabic grammatical structures when reading visually presented sentences that were unambiguously in Hebrew. Thus, although the orthography is a strong and reliable cue to language membership, different-script bilinguals were unable to limit activation to the target (L2) language. Notably, we found robust L1 interference in pure L2 tasks that did not require dual-language activation. In previous studies, cross-language interference was documented for different-script bilinguals, but typically exist for a given sentence.

Interestingly, L2 proficiency predicted cross-language interference management only in the grammatical domain, and only in the offline d’ measure. If indeed, as speculated above, interference management in the lexical domain relies on mechanisms built up through L1 experience, whereas interference management in the grammatical domain is trained more specifically through bilingual experience, it stands to reason that the latter but not the former would be related to overall L2 proficiency. However, the above described differences between the tasks might also contribute in some degree to these observed differences.

Finally, in the current study, domain general cognitive control did not significantly predict management of cross-language interference. This finding is especially important, because we probed the possible relation of these two cognitive constructs using multiple measures of control, and across two possible domains of cross-language interference (lexical and grammatical). Furthermore, the current study tested a relatively large number of participants (60), which arguably might more easily allow for detecting such a relationship.

Several recent studies did report significant statistical relations between domain general interference management and lexical cross-language interference management in bilinguals (Blumenfeld & Marian, 2013; Giezen et al., 2015; Mercier et al., 2014). However, the reported patterns of association are not consistent across studies. For example, whereas Blumenfeld and Marian (2013) link increased cognitive control to increased activation of cross-language competitors (though more efficient resolution of competition) in a visual world paradigm, Mercier et al. (2014) report an association in the opposite direction – namely, reduced activation of cross-language competitors linked to increased cognitive control (see also Giezen et al., 2015). In the current study, we failed to find a significant association between cognitive control and lexical cross-language interference, despite using several measures of cognitive control and a fairly large sample of participants. Although non-significant results may arise for different reasons, and their interpretation is not straightforward, at the very least the current study suggests that future research should continue to investigate this issue. An accumulation of more empirical data will allow us to identify recurring patterns, and reach a better understanding of the possible theoretical and methodological conditions that lead to the mixed results across the extant studies.

Further, in the current study we also did not find a significant relation between domain general cognitive control and cross-language interference in the grammatical domain. This issue has
received less attention in the literature, and to our knowledge the current study is the first to probe the possibility of such an association. Thus, the current findings do not support a link between cognitive control and cross-language interference across two language domains. We wish to put forth two possible explanations for this pattern of findings.

First, the current study investigated different-script bilinguals, whereas previous work focused on same-script bilinguals (Blumenfeld & Marian, 2013; Mercier et al., 2014; but see Giezen et al., 2015, for bi-modal bilinguals). As hypothesized in the introduction, language control and interference management might to some degree rely on different mechanisms in these different bilingual populations. To reiterate, cross-language activation might theoretically be reduce in different-script bilinguals, because the orthography provides a distinct cue to language membership (Gollan et al., 1997, but see Degani, Prior, & Tokowicz, 2011; Thierry & Wu, 2007). In addition, the two languages of different-script bilinguals may have developed differently than those of same-script bilinguals, with less overlap in activation between the two languages (Sunderman & Priya, 2012). Thus, although we found cross-language interference in different-script bilinguals, it still might be the case that due to the strong language-identity cue given in the orthographic representations, different-script bilinguals might rely to a lesser degree on domain general mechanisms for resolving cross-language interference.

A second, and by no means mutually exclusive, possible explanation stems from a consideration of the lack of convergence across the measures used in the current and previous research. As our own findings demonstrate, there was very little shared variance across the measures used in the current and previous research. This might be the case that due to the strong language-identity cue given in the orthographic representations, different-script bilinguals might rely to a lesser degree on domain general mechanisms for resolving cross-language interference.

To summarize, we observed robust cross-language interference, in both lexicon and grammar, for proficient adult different-script bilinguals. Notably, interference management in these two domains seems to operate relatively independently, possibly relying on distinct mechanisms. Higher L2 proficiency was linked to improved interference management in the grammatical domain in an offline measure of accuracy but not in online measures of reading. In the lexical domain, however, L2 proficiency was not related to improved interference management in either accuracy or reaction times. Finally, cross-language interference management in the current study was not related to domain-general cognitive control. These findings provide insight into the underlying mechanisms of cross-language interference management in bilinguals, and suggest that, to some degree at least, interference management might not be shared across language domains, and across language and domain-general cognitive control.

Acknowledgements

The authors wish to thank Prof. Raphiq Ibrahim for assistance in developing stimuli for the grammatical task, and Walaa Hajajra, Zehavit Mohager, and Amal Ruhana for research assistance. The authors also thank Jared Link and an anonymous reviewer for constructive comments on a previous version of the manuscript. AP was funded by EU-FP7 grant IRG-249163, and TD was funded by EU-FP7 grant CIG-322016.

Appendix A. Sentences used in the grammatical self-paced reading task, critical words are bolded

<table>
<thead>
<tr>
<th>Structural overlap</th>
<th>Grammatical variation</th>
<th>Ungrammatical variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different</td>
<td>היהי או מבנה שלול</td>
<td>היהי או מבנה שלול</td>
</tr>
<tr>
<td>Different</td>
<td>שלול או תואר</td>
<td>שלול או תואר</td>
</tr>
<tr>
<td>Different</td>
<td>תואר או השם</td>
<td>תואר או השם</td>
</tr>
<tr>
<td>Different</td>
<td>איסוף של תמיכה בחבילה</td>
<td>איסוף של תמיכה בחבילה</td>
</tr>
<tr>
<td>Different</td>
<td>תמיכה בחבילה או השם</td>
<td>תמיכה בחבילה או השם</td>
</tr>
<tr>
<td>Different</td>
<td>השם או שם קבוצתי</td>
<td>השם או שם קבוצתי</td>
</tr>
<tr>
<td>Different</td>
<td>קבוצתי או תואר</td>
<td>קבוצתי או תואר</td>
</tr>
<tr>
<td>Different</td>
<td>תואר או השם</td>
<td>תואר או השם</td>
</tr>
<tr>
<td>Different</td>
<td>השם או שם קבוצתי</td>
<td>השם או שם קבוצתי</td>
</tr>
<tr>
<td>Different</td>
<td>שם קבוצתי או תואר</td>
<td>שם קבוצתי או תואר</td>
</tr>
</tbody>
</table>

EU-FP7 grant CIG-322016.
Appendix A (continued)

<table>
<thead>
<tr>
<th>Structural overlap</th>
<th>Grammatical variation</th>
<th>Ungrammatical variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Similar</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued on next page)
Kim, J., & Davis, C. (2003). Task effect in masked cross-script translation and
Kilgarriff, A., Baisa, V., Bušta, J., Jakubícˇek, M., Kovárˇ, V., Michelfeit, J., ... Suchomel, V.